Cargando…
CINET: A Brain-Inspired Deep Learning Context-Integrating Neural Network Model for Resolving Ambiguous Stimuli
The brain uses contextual information to uniquely resolve the interpretation of ambiguous stimuli. This paper introduces a deep learning neural network classification model that emulates this ability by integrating weighted bidirectional context into the classification process. The model, referred t...
Autores principales: | Amerineni, Rajesh, Gupta, Resh S., Gupta, Lalit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7071366/ https://www.ncbi.nlm.nih.gov/pubmed/31991649 http://dx.doi.org/10.3390/brainsci10020064 |
Ejemplares similares
-
Multimodal Object Classification Models Inspired by Multisensory Integration in the Brain
por: Amerineni, Rajesh, et al.
Publicado: (2019) -
Multidomain Convolution Neural Network Models for Improved Event-Related Potential Classification
por: Chen, Xiaoqian, et al.
Publicado: (2023) -
Resolving the Neutrino Ambiguity
por: Mei, Kelvin
Publicado: (2012) -
Resolve integer ambiguity based on the global deep grid-based algorithms
por: Zhi, Gang, et al.
Publicado: (2023) -
The novel XYU-GEM to resolve ambiguities
por: Flöthner, K.J., et al.
Publicado: (2023)