Cargando…
Prediction of Individual User’s Dynamic Ranges of EEG Features from Resting-State EEG Data for Evaluating Their Suitability for Passive Brain–Computer Interface Applications
With the recent development of low-cost wearable electroencephalogram (EEG) recording systems, passive brain–computer interface (pBCI) applications are being actively studied for a variety of application areas, such as education, entertainment, and healthcare. Various EEG features have been employed...
Autores principales: | Cha, Ho-Seung, Han, Chang-Hee, Im, Chang-Hwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7071472/ https://www.ncbi.nlm.nih.gov/pubmed/32059543 http://dx.doi.org/10.3390/s20040988 |
Ejemplares similares
-
Design of Wearable EEG Devices Specialized for Passive Brain–Computer Interface Applications
por: Park, Seonghun, et al.
Publicado: (2020) -
Data-Driven User Feedback: An Improved Neurofeedback Strategy considering the Interindividual Variability of EEG Features
por: Han, Chang-Hee, et al.
Publicado: (2016) -
On the Feasibility of Using an Ear-EEG to Develop an Endogenous Brain-Computer Interface
por: Choi, Soo-In, et al.
Publicado: (2018) -
Computational EEG analysis: methods and applications
por: Im, Chang-Hwan
Publicado: (2018) -
Comparative analysis of default mode networks in major psychiatric disorders using resting-state EEG
por: Choi, Kang-Min, et al.
Publicado: (2021)