Cargando…

Influence of cortical bone and implant design in the primary stability of dental implants measured by two different devices of resonance frequency analysis: An in vitro study

BACKGROUND: This study aimed to evaluate the effect of the implant design and the presence of cortical bone in the primary stability, as well as analyze the differences between the stability measurements obtained by two different resonance frequency analysis (RFA) devices. MATERIAL AND METHODS: A to...

Descripción completa

Detalles Bibliográficos
Autores principales: Chávarri-Prado, David, Brizuela-Velasco, Aritza, Diéguez-Pereira, Markel, Pérez-Pevida, Esteban, Jiménez-Garrudo, Antonio, Viteri-Agustín, Iratxe, Estrada-Martínez, Alejandro, Montalbán-Vadillo, Oier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medicina Oral S.L. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7071536/
https://www.ncbi.nlm.nih.gov/pubmed/32190194
http://dx.doi.org/10.4317/jced.56014
_version_ 1783506224369631232
author Chávarri-Prado, David
Brizuela-Velasco, Aritza
Diéguez-Pereira, Markel
Pérez-Pevida, Esteban
Jiménez-Garrudo, Antonio
Viteri-Agustín, Iratxe
Estrada-Martínez, Alejandro
Montalbán-Vadillo, Oier
author_facet Chávarri-Prado, David
Brizuela-Velasco, Aritza
Diéguez-Pereira, Markel
Pérez-Pevida, Esteban
Jiménez-Garrudo, Antonio
Viteri-Agustín, Iratxe
Estrada-Martínez, Alejandro
Montalbán-Vadillo, Oier
author_sort Chávarri-Prado, David
collection PubMed
description BACKGROUND: This study aimed to evaluate the effect of the implant design and the presence of cortical bone in the primary stability, as well as analyze the differences between the stability measurements obtained by two different resonance frequency analysis (RFA) devices. MATERIAL AND METHODS: A total of 80 Klockner implants of two different models [40 Essential Cone implants (group A) and 40 Vega implants (group B)] were used. The implants were placed in two polyurethane blocks that simulated the mechanical properties of the maxillary bone. One block featured a layer of cortical bone that was absent from the other block. The primary stability of all implants was measured by insertion torque and RFA using two different devices: Penguin RFA and Osstell IDX. RESULTS: Primary stability was superior in the cortical bone in both torque and RFA. In the block containing cortical bone, group A implants obtained a greater insertion torque than did group B. The insertion torque was lesser in the bone lacking cortex. Regarding the ISQ of the implants, group A presented higher values in the block with cortical bone, but the values were lower in the block without cortical bone. There were no significant differences between the values obtained from the Osstell IDX and Penguin RFA. CONCLUSIONS: The presence of cortical bone positively influences the primary stability of dental implants. The design of the implant also has a statistically significant influence on implant primary stability, although the impact depends on whether there is coronal cerclage or not. There were no statistically significant differences in the implant stability measurements obtained by two different devices. Key words:Implant stability, resonance frequency analysis, torque, osstell, penguin, cortical.
format Online
Article
Text
id pubmed-7071536
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Medicina Oral S.L.
record_format MEDLINE/PubMed
spelling pubmed-70715362020-03-18 Influence of cortical bone and implant design in the primary stability of dental implants measured by two different devices of resonance frequency analysis: An in vitro study Chávarri-Prado, David Brizuela-Velasco, Aritza Diéguez-Pereira, Markel Pérez-Pevida, Esteban Jiménez-Garrudo, Antonio Viteri-Agustín, Iratxe Estrada-Martínez, Alejandro Montalbán-Vadillo, Oier J Clin Exp Dent Research BACKGROUND: This study aimed to evaluate the effect of the implant design and the presence of cortical bone in the primary stability, as well as analyze the differences between the stability measurements obtained by two different resonance frequency analysis (RFA) devices. MATERIAL AND METHODS: A total of 80 Klockner implants of two different models [40 Essential Cone implants (group A) and 40 Vega implants (group B)] were used. The implants were placed in two polyurethane blocks that simulated the mechanical properties of the maxillary bone. One block featured a layer of cortical bone that was absent from the other block. The primary stability of all implants was measured by insertion torque and RFA using two different devices: Penguin RFA and Osstell IDX. RESULTS: Primary stability was superior in the cortical bone in both torque and RFA. In the block containing cortical bone, group A implants obtained a greater insertion torque than did group B. The insertion torque was lesser in the bone lacking cortex. Regarding the ISQ of the implants, group A presented higher values in the block with cortical bone, but the values were lower in the block without cortical bone. There were no significant differences between the values obtained from the Osstell IDX and Penguin RFA. CONCLUSIONS: The presence of cortical bone positively influences the primary stability of dental implants. The design of the implant also has a statistically significant influence on implant primary stability, although the impact depends on whether there is coronal cerclage or not. There were no statistically significant differences in the implant stability measurements obtained by two different devices. Key words:Implant stability, resonance frequency analysis, torque, osstell, penguin, cortical. Medicina Oral S.L. 2020-03-01 /pmc/articles/PMC7071536/ /pubmed/32190194 http://dx.doi.org/10.4317/jced.56014 Text en Copyright: © 2020 Medicina Oral S.L. http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Chávarri-Prado, David
Brizuela-Velasco, Aritza
Diéguez-Pereira, Markel
Pérez-Pevida, Esteban
Jiménez-Garrudo, Antonio
Viteri-Agustín, Iratxe
Estrada-Martínez, Alejandro
Montalbán-Vadillo, Oier
Influence of cortical bone and implant design in the primary stability of dental implants measured by two different devices of resonance frequency analysis: An in vitro study
title Influence of cortical bone and implant design in the primary stability of dental implants measured by two different devices of resonance frequency analysis: An in vitro study
title_full Influence of cortical bone and implant design in the primary stability of dental implants measured by two different devices of resonance frequency analysis: An in vitro study
title_fullStr Influence of cortical bone and implant design in the primary stability of dental implants measured by two different devices of resonance frequency analysis: An in vitro study
title_full_unstemmed Influence of cortical bone and implant design in the primary stability of dental implants measured by two different devices of resonance frequency analysis: An in vitro study
title_short Influence of cortical bone and implant design in the primary stability of dental implants measured by two different devices of resonance frequency analysis: An in vitro study
title_sort influence of cortical bone and implant design in the primary stability of dental implants measured by two different devices of resonance frequency analysis: an in vitro study
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7071536/
https://www.ncbi.nlm.nih.gov/pubmed/32190194
http://dx.doi.org/10.4317/jced.56014
work_keys_str_mv AT chavarripradodavid influenceofcorticalboneandimplantdesignintheprimarystabilityofdentalimplantsmeasuredbytwodifferentdevicesofresonancefrequencyanalysisaninvitrostudy
AT brizuelavelascoaritza influenceofcorticalboneandimplantdesignintheprimarystabilityofdentalimplantsmeasuredbytwodifferentdevicesofresonancefrequencyanalysisaninvitrostudy
AT dieguezpereiramarkel influenceofcorticalboneandimplantdesignintheprimarystabilityofdentalimplantsmeasuredbytwodifferentdevicesofresonancefrequencyanalysisaninvitrostudy
AT perezpevidaesteban influenceofcorticalboneandimplantdesignintheprimarystabilityofdentalimplantsmeasuredbytwodifferentdevicesofresonancefrequencyanalysisaninvitrostudy
AT jimenezgarrudoantonio influenceofcorticalboneandimplantdesignintheprimarystabilityofdentalimplantsmeasuredbytwodifferentdevicesofresonancefrequencyanalysisaninvitrostudy
AT viteriagustiniratxe influenceofcorticalboneandimplantdesignintheprimarystabilityofdentalimplantsmeasuredbytwodifferentdevicesofresonancefrequencyanalysisaninvitrostudy
AT estradamartinezalejandro influenceofcorticalboneandimplantdesignintheprimarystabilityofdentalimplantsmeasuredbytwodifferentdevicesofresonancefrequencyanalysisaninvitrostudy
AT montalbanvadillooier influenceofcorticalboneandimplantdesignintheprimarystabilityofdentalimplantsmeasuredbytwodifferentdevicesofresonancefrequencyanalysisaninvitrostudy