Cargando…
A framework for assessing 16S rRNA marker-gene survey data analysis methods using mixtures.
BACKGROUND: There are a variety of bioinformatic pipelines and downstream analysis methods for analyzing 16S rRNA marker-gene surveys. However, appropriate assessment datasets and metrics are needed as there is limited guidance to decide between available analysis methods. Mixtures of environmental...
Autores principales: | Olson, Nathan D., Kumar, M. Senthil, Li, Shan, Braccia, Domenick J., Hao, Stephanie, Timp, Winston, Salit, Marc L., Stine, O. Colin, Bravo, Hector Corrada |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7071580/ https://www.ncbi.nlm.nih.gov/pubmed/32169095 http://dx.doi.org/10.1186/s40168-020-00812-1 |
Ejemplares similares
-
Interactive exploratory data analysis of Integrative Human Microbiome Project data using Metaviz
por: Wagner, Justin, et al.
Publicado: (2021) -
Robust methods for differential abundance analysis in marker gene surveys
por: Paulson, Joseph N., et al.
Publicado: (2013) -
Analysis and correction of compositional bias in sparse sequencing count data
por: Kumar, M. Senthil, et al.
Publicado: (2018) -
Quantification of variation and the impact of biomass in targeted 16S rRNA gene sequencing studies
por: Bender, Jeffrey M., et al.
Publicado: (2018) -
metaSPARSim: a 16S rRNA gene sequencing count data simulator
por: Patuzzi, Ilaria, et al.
Publicado: (2019)