Cargando…
Forecasting incidence of infectious diarrhea using random forest in Jiangsu Province, China
BACKGROUND: Infectious diarrhea can lead to a considerable global disease burden. Thus, the accurate prediction of an infectious diarrhea epidemic is crucial for public health authorities. This study was aimed at developing an optimal random forest (RF) model, considering meteorological factors used...
Autores principales: | Fang, Xinyu, Liu, Wendong, Ai, Jing, He, Mike, Wu, Ying, Shi, Yingying, Shen, Wenqi, Bao, Changjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7071679/ https://www.ncbi.nlm.nih.gov/pubmed/32171261 http://dx.doi.org/10.1186/s12879-020-4930-2 |
Ejemplares similares
-
Epidemiology of infectious diarrhoea and the relationship with etiological and meteorological factors in Jiangsu Province, China
por: Fang, Xinyu, et al.
Publicado: (2019) -
Forecasting incidence of hand, foot and mouth disease using BP neural networks in Jiangsu province, China
por: Liu, Wendong, et al.
Publicado: (2019) -
Weighted Markov chains for forecasting and analysis in Incidence of infectious diseases in jiangsu Province, China()
por: Peng, Zhihang, et al.
Publicado: (2010) -
Predicting incidence of hepatitis E using machine learning in Jiangsu Province, China
por: Cheng, Xiaoqing, et al.
Publicado: (2022) -
Analysis of the spatial-temporal distribution characteristics of hepatitis E in Jiangsu province from 2005 to 2020
por: Shi, Yao, et al.
Publicado: (2023)