Cargando…

Temporal responses of conserved miRNAs to drought and their associations with drought tolerance and productivity in rice

BACKGROUND: Plant miRNAs play crucial roles in responses to drought and developmental processes. It is essential to understand the association of miRNAs with drought-tolerance (DT), as well as their impacts on growth, development, and reproduction (GDP). This will facilitate our utilization of rice...

Descripción completa

Detalles Bibliográficos
Autores principales: Xia, Hui, Yu, Shunwu, Kong, Deyan, Xiong, Jie, Ma, Xiaosong, Chen, Liang, Luo, Lijun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7071783/
https://www.ncbi.nlm.nih.gov/pubmed/32171232
http://dx.doi.org/10.1186/s12864-020-6646-5
Descripción
Sumario:BACKGROUND: Plant miRNAs play crucial roles in responses to drought and developmental processes. It is essential to understand the association of miRNAs with drought-tolerance (DT), as well as their impacts on growth, development, and reproduction (GDP). This will facilitate our utilization of rice miRNAs in breeding. RESULTS: In this study, we investigated the time course of miRNA responses to a long-term drought among six rice genotypes by high-throughput sequencing. In total, 354 conserved miRNAs were drought responsive, representing obvious genotype- and stage-dependent patterns. The drought-responsive miRNAs (DRMs) formed complex regulatory network via their coexpression and direct/indirect impacts on the rice transcriptome. Based on correlation analyses, 211 DRMs were predicted to be associated with DT and/or GDP. Noticeably, 14.2% DRMs were inversely correlated with DT and GDP. In addition, 9 pairs of mature miRNAs, each derived from the same pre-miRNAs, were predicted to have opposite roles in regulating DT and GDP. This suggests a potential yield penalty if an inappropriate miRNA/pre-miRNA is utilized. miRNAs have profound impacts on the rice transcriptome reflected by great number of correlated drought-responsive genes. By regulating these genes, a miRNA could activate diverse biological processes and metabolic pathways to adapt to drought and have an influence on its GDP. CONCLUSION: Based on the temporal pattern of miRNAs in response to drought, we have described the complex network between DRMs. Potential associations of DRMs with DT and/or GDP were disclosed. This knowledge provides valuable information for a better understanding in the roles of miRNAs play in rice DT and/or GDP, which can facilitate our utilization of miRNA in breeding.