Cargando…

A robust flow cytometry-based biomass monitoring tool enables rapid at-line characterization of S. cerevisiae physiology during continuous bioprocessing of spent sulfite liquor

Assessment of viable biomass is challenging in bioprocesses involving complex media with distinct biomass and media particle populations. Biomass monitoring in these circumstances usually requires elaborate offline methods or sophisticated inline sensors. Reliable monitoring tools in an at-line capa...

Descripción completa

Detalles Bibliográficos
Autores principales: Vees, Charlotte Anne, Veiter, Lukas, Sax, Fritz, Herwig, Christoph, Pflügl, Stefan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072058/
https://www.ncbi.nlm.nih.gov/pubmed/32034454
http://dx.doi.org/10.1007/s00216-020-02423-z
Descripción
Sumario:Assessment of viable biomass is challenging in bioprocesses involving complex media with distinct biomass and media particle populations. Biomass monitoring in these circumstances usually requires elaborate offline methods or sophisticated inline sensors. Reliable monitoring tools in an at-line capacity represent a promising alternative but are still scarce to date. In this study, a flow cytometry-based method for biomass monitoring in spent sulfite liquor medium as feedstock for second generation bioethanol production with yeast was developed. The method is capable of (i) yeast cell quantification against medium background, (ii) determination of yeast viability, and (iii) assessment of yeast physiology though morphological analysis of the budding division process. Thus, enhanced insight into physiology and morphology is provided which is not accessible through common online and offline biomass monitoring methods. To demonstrate the capabilities of this method, firstly, a continuous ethanol fermentation process of Saccharomyces cerevisiae with filtered and unfiltered spent sulfite liquor media was analyzed. Subsequently, at-line process monitoring of viability in a retentostat cultivation was conducted. The obtained information was used for a simple control based on addition of essential nutrients in relation to viability. Thereby, inter-dependencies between nutrient supply, physiology, and specific ethanol productivity that are essential for process design could be illuminated. [Figure: see text]