Cargando…
Mutation Analysis of Colorectal and Gastric Carcinomas Originating from Adenomas: Insights into Genomic Evolution Associated with Malignant Progression
Small malignant tumor foci arising from benign lesions are rare but offer a unique opportunity to investigate the genomic evolution that occurs during malignant transformation. In this study, we analyzed 11 colorectal and 10 gastric adenoma–carcinoma pairs, each of which represented malignant tumors...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072232/ https://www.ncbi.nlm.nih.gov/pubmed/32023847 http://dx.doi.org/10.3390/cancers12020325 |
Sumario: | Small malignant tumor foci arising from benign lesions are rare but offer a unique opportunity to investigate the genomic evolution that occurs during malignant transformation. In this study, we analyzed 11 colorectal and 10 gastric adenoma–carcinoma pairs, each of which represented malignant tumors (carcinomas) embedded in benign lesions (adenomas) found in the same patient. Whole-exome sequencing revealed that mutation abundance was variable across different cases, but comparable between adenoma–carcinoma pairs. When mutations were classified as adenoma-specific, carcinoma-specific, or common, adenoma-specific mutations were more enriched with subclonal mutations than were carcinoma-specific mutations, indicative of a perturbation in mutational subclonal architecture (such as selective sweep) during malignant transformation. Among the recurrent mutations in colorectal cancers, APC and KRAS mutations were common between adenomas and carcinomas, indicative of their early occurrence during genomic evolution. TP53 mutations were often observed as adenoma-specific and therefore likely not associated with the emergence of malignant clones. Clonality-based enrichment analysis revealed that subclonal mutations of extracellular matrix genes in adenomas are more likely to be clonal in carcinomas, indicating potential roles for these genes in malignant transformation. Compared with colorectal cancers, gastric cancers showed more lesion-specific mutations than common mutations and higher levels of discordance in copy number profiles between matched adenomas and carcinomas, which may explain the elevated evolutionary dynamics and heterogeneity of gastric cancers compared to colorectal cancers. Taken together, this study demonstrates that co-existing benign and malignant lesions enable the evolution-based categorization of genomic alterations that may reveal clinically important biomarkers in colorectal and gastric cancers. |
---|