Cargando…
Clustered DNA Damage: Electronic Properties and Their Influence on Charge Transfer. 7,8-Dihydro-8-Oxo-2′-Deoxyguaosine Versus 5′,8-Cyclo-2′-Deoxyadenosines: A Theoretical Approach
Approximately 3 × 10(17) DNA damage events take place per hour in the human body. Within clustered DNA lesions, they pose a serious problem for repair proteins, especially for iron–sulfur glycosylases (MutyH), which can recognize them by the electron-transfer process. It has been found that the pres...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072346/ https://www.ncbi.nlm.nih.gov/pubmed/32059490 http://dx.doi.org/10.3390/cells9020424 |
_version_ | 1783506385185538048 |
---|---|
author | Karwowski, Boleslaw T. |
author_facet | Karwowski, Boleslaw T. |
author_sort | Karwowski, Boleslaw T. |
collection | PubMed |
description | Approximately 3 × 10(17) DNA damage events take place per hour in the human body. Within clustered DNA lesions, they pose a serious problem for repair proteins, especially for iron–sulfur glycosylases (MutyH), which can recognize them by the electron-transfer process. It has been found that the presence of both 5′,8-cyclo-2′-deoxyadenosine (cdA) diastereomers in the ds-DNA structure, as part of a clustered lesion, can influence vertical radical cation distribution within the proximal part of the double helix, i.e., d[~oxoGcAoxoG~] (7,8-dihydro-8-oxo-2′-deoxyguaosine - (oxo)dG). Here, the influence of cdA, “the simplest tandem lesion”, on the charge transfer through ds-DNA was taken into theoretical consideration at the M062x/6-31+G** level of theory in the aqueous phase. It was shown that the presence of (5′S)- or (5′R)-cdA leads to a slowdown in the hole transfer by one order of magnitude between the neighboring dG→(oxo)dG in comparison to “native” ds-DNA. Therefore, it can be concluded that such clustered lesions can lead to defective damage recognition with a subsequent slowing down of the DNA repair process, giving rise to an increase in mutations. As a result, the unrepaired, (oxo)dG: dA base pair prior to genetic information replication can finally result in GC → TA or AT→CG transversion. This type of mutation is commonly observed in human cancer cells. Moreover, because local multiple damage sites (LMSD) are effectively produced as a result of ionization factors, the presented data in this article might be useful in developing a new scheme of radiotherapy treatment against the background of DNA repair efficiency. |
format | Online Article Text |
id | pubmed-7072346 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70723462020-03-19 Clustered DNA Damage: Electronic Properties and Their Influence on Charge Transfer. 7,8-Dihydro-8-Oxo-2′-Deoxyguaosine Versus 5′,8-Cyclo-2′-Deoxyadenosines: A Theoretical Approach Karwowski, Boleslaw T. Cells Article Approximately 3 × 10(17) DNA damage events take place per hour in the human body. Within clustered DNA lesions, they pose a serious problem for repair proteins, especially for iron–sulfur glycosylases (MutyH), which can recognize them by the electron-transfer process. It has been found that the presence of both 5′,8-cyclo-2′-deoxyadenosine (cdA) diastereomers in the ds-DNA structure, as part of a clustered lesion, can influence vertical radical cation distribution within the proximal part of the double helix, i.e., d[~oxoGcAoxoG~] (7,8-dihydro-8-oxo-2′-deoxyguaosine - (oxo)dG). Here, the influence of cdA, “the simplest tandem lesion”, on the charge transfer through ds-DNA was taken into theoretical consideration at the M062x/6-31+G** level of theory in the aqueous phase. It was shown that the presence of (5′S)- or (5′R)-cdA leads to a slowdown in the hole transfer by one order of magnitude between the neighboring dG→(oxo)dG in comparison to “native” ds-DNA. Therefore, it can be concluded that such clustered lesions can lead to defective damage recognition with a subsequent slowing down of the DNA repair process, giving rise to an increase in mutations. As a result, the unrepaired, (oxo)dG: dA base pair prior to genetic information replication can finally result in GC → TA or AT→CG transversion. This type of mutation is commonly observed in human cancer cells. Moreover, because local multiple damage sites (LMSD) are effectively produced as a result of ionization factors, the presented data in this article might be useful in developing a new scheme of radiotherapy treatment against the background of DNA repair efficiency. MDPI 2020-02-12 /pmc/articles/PMC7072346/ /pubmed/32059490 http://dx.doi.org/10.3390/cells9020424 Text en © 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Karwowski, Boleslaw T. Clustered DNA Damage: Electronic Properties and Their Influence on Charge Transfer. 7,8-Dihydro-8-Oxo-2′-Deoxyguaosine Versus 5′,8-Cyclo-2′-Deoxyadenosines: A Theoretical Approach |
title | Clustered DNA Damage: Electronic Properties and Their Influence on Charge Transfer. 7,8-Dihydro-8-Oxo-2′-Deoxyguaosine Versus 5′,8-Cyclo-2′-Deoxyadenosines: A Theoretical Approach |
title_full | Clustered DNA Damage: Electronic Properties and Their Influence on Charge Transfer. 7,8-Dihydro-8-Oxo-2′-Deoxyguaosine Versus 5′,8-Cyclo-2′-Deoxyadenosines: A Theoretical Approach |
title_fullStr | Clustered DNA Damage: Electronic Properties and Their Influence on Charge Transfer. 7,8-Dihydro-8-Oxo-2′-Deoxyguaosine Versus 5′,8-Cyclo-2′-Deoxyadenosines: A Theoretical Approach |
title_full_unstemmed | Clustered DNA Damage: Electronic Properties and Their Influence on Charge Transfer. 7,8-Dihydro-8-Oxo-2′-Deoxyguaosine Versus 5′,8-Cyclo-2′-Deoxyadenosines: A Theoretical Approach |
title_short | Clustered DNA Damage: Electronic Properties and Their Influence on Charge Transfer. 7,8-Dihydro-8-Oxo-2′-Deoxyguaosine Versus 5′,8-Cyclo-2′-Deoxyadenosines: A Theoretical Approach |
title_sort | clustered dna damage: electronic properties and their influence on charge transfer. 7,8-dihydro-8-oxo-2′-deoxyguaosine versus 5′,8-cyclo-2′-deoxyadenosines: a theoretical approach |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072346/ https://www.ncbi.nlm.nih.gov/pubmed/32059490 http://dx.doi.org/10.3390/cells9020424 |
work_keys_str_mv | AT karwowskiboleslawt clustereddnadamageelectronicpropertiesandtheirinfluenceonchargetransfer78dihydro8oxo2deoxyguaosineversus58cyclo2deoxyadenosinesatheoreticalapproach |