Cargando…
The Impact of Normalization Approaches to Automatically Detect Radiogenomic Phenotypes Characterizing Breast Cancer Receptors Status
In breast cancer studies, combining quantitative radiomic with genomic signatures can help identifying and characterizing radiogenomic phenotypes, in function of molecular receptor status. Biomedical imaging processing lacks standards in radiomic feature normalization methods and neglecting feature...
Autores principales: | Castaldo, Rossana, Pane, Katia, Nicolai, Emanuele, Salvatore, Marco, Franzese, Monica |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072389/ https://www.ncbi.nlm.nih.gov/pubmed/32102334 http://dx.doi.org/10.3390/cancers12020518 |
Ejemplares similares
-
MuSA: a graphical user interface for multi-OMICs data integration in radiogenomic studies
por: Zanfardino, Mario, et al.
Publicado: (2021) -
TCGA-TCIA Impact on Radiogenomics Cancer Research: A Systematic Review
por: Zanfardino, Mario, et al.
Publicado: (2019) -
An Integrative Computational Approach Based on Expression Similarity Signatures to Identify Protein–Protein Interaction Networks in Female-Specific Cancers
por: Pane, Katia, et al.
Publicado: (2020) -
Impact of radiogenomics in esophageal cancer on clinical outcomes: A pilot study
por: Brancato, Valentina, et al.
Publicado: (2021) -
Impact of Breast Tumor Onset on Blood Count, Carcinoembryonic Antigen, Cancer Antigen 15-3 and Lymphoid Subpopulations Supported by Automatic Classification Approach: A Pilot Study
por: Baselice, Simona, et al.
Publicado: (2021)