Cargando…
Checkpoint Defects Elicit a WRNIP1-Mediated Response to Counteract R-Loop-Associated Genomic Instability
Conflicts between replication and transcription are a common source of genomic instability, a characteristic of almost all human cancers. Aberrant R-loops can cause a block to replication fork progression. A growing number of factors are involved in the resolution of these harmful structures and man...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072626/ https://www.ncbi.nlm.nih.gov/pubmed/32046194 http://dx.doi.org/10.3390/cancers12020389 |
Sumario: | Conflicts between replication and transcription are a common source of genomic instability, a characteristic of almost all human cancers. Aberrant R-loops can cause a block to replication fork progression. A growing number of factors are involved in the resolution of these harmful structures and many perhaps are still unknown. Here, we reveal that the Werner interacting protein 1 (WRNIP1)-mediated response is implicated in counteracting aberrant R-loop accumulation. Using human cellular models with compromised Ataxia-Telangiectasia and Rad3-Related (ATR)-dependent checkpoint activation, we show that WRNIP1 is stabilized in chromatin and is needed for maintaining genome integrity by mediating the Ataxia Telangiectasia Mutated (ATM)-dependent phosphorylation of Checkpoint kinase 1 (CHK1). Furthermore, we demonstrated that loss of Werner Syndrome protein (WRN) or ATR signaling leads to formation of R-loop-dependent parental ssDNA upon mild replication stress, which is covered by Radiorestistance protein 51 (RAD51). We prove that Werner helicase-interacting protein 1 (WRNIP1) chromatin retention is also required to stabilize the association of RAD51 with ssDNA in proximity of R-loops. Therefore, in these pathological contexts, ATM inhibition or WRNIP1 abrogation is accompanied by increased levels of genomic instability. Overall, our findings suggest a novel function for WRNIP1 in preventing R-loop-driven genome instability, providing new clues to understand the way replication–transcription conflicts are handled. |
---|