Cargando…
PVPred-SCM: Improved Prediction and Analysis of Phage Virion Proteins Using a Scoring Card Method
Although, existing methods have been successful in predicting phage (or bacteriophage) virion proteins (PVPs) using various types of protein features and complex classifiers, such as support vector machine and naïve Bayes, these two methods do not allow interpretability. However, the characterizatio...
Autores principales: | Charoenkwan, Phasit, Kanthawong, Sakawrat, Schaduangrat, Nalini, Yana, Janchai, Shoombuatong, Watshara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072630/ https://www.ncbi.nlm.nih.gov/pubmed/32028709 http://dx.doi.org/10.3390/cells9020353 |
Ejemplares similares
-
Large-scale comparative review and assessment of computational methods for phage virion proteins identification
por: Kabir, Muhammad, et al.
Publicado: (2022) -
SCMRSA: a New Approach
for Identifying and Analyzing
Anti-MRSA Peptides Using Estimated Propensity Scores of Dipeptides
por: Charoenkwan, Phasit, et al.
Publicado: (2022) -
iAMAP-SCM: A Novel
Computational Tool for Large-Scale
Identification of Antimalarial Peptides Using Estimated Propensity
Scores of Dipeptides
por: Charoenkwan, Phasit, et al.
Publicado: (2022) -
StackTTCA: a stacking ensemble learning-based framework for accurate and high-throughput identification of tumor T cell antigens
por: Charoenkwan, Phasit, et al.
Publicado: (2023) -
DeepAR: a novel deep learning-based hybrid framework for the interpretable prediction of androgen receptor antagonists
por: Schaduangrat, Nalini, et al.
Publicado: (2023)