Cargando…
A SOX2 Reporter System Identifies Gastric Cancer Stem-Like Cells Sensitive to Monensin
Gastric cancer remains a serious health burden with few therapeutic options. Therefore, the recognition of cancer stem cells (CSCs) as seeds of the tumorigenic process makes them a prime therapeutic target. Knowing that the transcription factors SOX2 and OCT4 promote stemness, our approach was to is...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072720/ https://www.ncbi.nlm.nih.gov/pubmed/32093282 http://dx.doi.org/10.3390/cancers12020495 |
Sumario: | Gastric cancer remains a serious health burden with few therapeutic options. Therefore, the recognition of cancer stem cells (CSCs) as seeds of the tumorigenic process makes them a prime therapeutic target. Knowing that the transcription factors SOX2 and OCT4 promote stemness, our approach was to isolate stem-like cells in human gastric cancer cell lines using a traceable reporter system based on SOX2/OCT4 activity (SORE6-GFP). Cells transduced with the SORE6-GFP reporter system were sorted into SORE6+ and SORE6– cell populations, and their biological behavior characterized. SORE6+ cells were enriched for SOX2 and exhibited CSC features, including a greater ability to proliferate and form gastrospheres in non-adherent conditions, a larger in vivo tumor initiating capability, and increased resistance to 5-fluorouracil (5-FU) treatment. The overexpression and knockdown of SOX2 revealed a crucial role of SOX2 in cell proliferation and drug resistance. By combining the reporter system with a high-throughput screening of pharmacologically active small molecules we identified monensin, an ionophore antibiotic, displaying selective toxicity to SORE6+ cells. The ability of SORE6-GFP reporter system to recognize cancer stem-like cells facilitates our understanding of gastric CSC biology and serves as a platform for the identification of powerful therapeutics for targeting gastric CSCs. |
---|