Cargando…

MEG3 Promotes Differentiation of Porcine Satellite Cells by Sponging miR-423-5p to Relieve Inhibiting Effect on SRF

Although thousands of long noncoding RNAs (lncRNAs) have been identified in porcine growth and development, the regulation mechanisms of functional lncRNAs have not been well explored. In this study, using 5′- and 3′-rapid amplification of cDNA ends (RACE) assays, we obtained two different variants...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheng, Xiaofang, Li, Long, Shi, Gaoli, Chen, Lin, Fang, Chengchi, Li, Mengxun, Li, Changchun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072828/
https://www.ncbi.nlm.nih.gov/pubmed/32075310
http://dx.doi.org/10.3390/cells9020449
_version_ 1783506497469153280
author Cheng, Xiaofang
Li, Long
Shi, Gaoli
Chen, Lin
Fang, Chengchi
Li, Mengxun
Li, Changchun
author_facet Cheng, Xiaofang
Li, Long
Shi, Gaoli
Chen, Lin
Fang, Chengchi
Li, Mengxun
Li, Changchun
author_sort Cheng, Xiaofang
collection PubMed
description Although thousands of long noncoding RNAs (lncRNAs) have been identified in porcine growth and development, the regulation mechanisms of functional lncRNAs have not been well explored. In this study, using 5′- and 3′-rapid amplification of cDNA ends (RACE) assays, we obtained two different variants of lncRNA maternally expressed gene 3 (MEG3), namely, MEG3 v1 and MEG3 v2, that were both highly expressed in porcine skeletal muscle and in the early stage of the differentiation of porcine satellite cells. Moreover, we identified the core transcript MEG3 v2. Functional analyses showed that MEG3 overexpression could effectively arrest myoblasts in the G1 phase, inhibit DNA replication, and promote myoblast differentiation, whereas MEG3 knockdown resulted in the opposite effects. Interestingly, the expression of serum response factor (SRF), a crucial transcription factor for myogenesis process, remarkably increased and decreased in mRNA and protein levels with the respective overexpression and knockdown of MEG3. Dual luciferase reporter assay showed that MEG3 could attenuate the decrease of luciferase activity of SRF induced by miR-423-5p in a dose-dependent manner. MEG3 overexpression could relieve the inhibitory effect on SRF and myoblast differentiation induced by miR-423-5p. In addition, results of RNA immunoprecipitation analysis suggested that MEG3 could act as a ceRNA for miR-423-5p. Our findings initially established a novel connection among MEG3, miR-423-5p, and SRF in porcine satellite cell differentiation. This novel role of MEG3 may shed new light on understanding of molecular regulation of lncRNA in porcine myogenesis.
format Online
Article
Text
id pubmed-7072828
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-70728282020-03-19 MEG3 Promotes Differentiation of Porcine Satellite Cells by Sponging miR-423-5p to Relieve Inhibiting Effect on SRF Cheng, Xiaofang Li, Long Shi, Gaoli Chen, Lin Fang, Chengchi Li, Mengxun Li, Changchun Cells Article Although thousands of long noncoding RNAs (lncRNAs) have been identified in porcine growth and development, the regulation mechanisms of functional lncRNAs have not been well explored. In this study, using 5′- and 3′-rapid amplification of cDNA ends (RACE) assays, we obtained two different variants of lncRNA maternally expressed gene 3 (MEG3), namely, MEG3 v1 and MEG3 v2, that were both highly expressed in porcine skeletal muscle and in the early stage of the differentiation of porcine satellite cells. Moreover, we identified the core transcript MEG3 v2. Functional analyses showed that MEG3 overexpression could effectively arrest myoblasts in the G1 phase, inhibit DNA replication, and promote myoblast differentiation, whereas MEG3 knockdown resulted in the opposite effects. Interestingly, the expression of serum response factor (SRF), a crucial transcription factor for myogenesis process, remarkably increased and decreased in mRNA and protein levels with the respective overexpression and knockdown of MEG3. Dual luciferase reporter assay showed that MEG3 could attenuate the decrease of luciferase activity of SRF induced by miR-423-5p in a dose-dependent manner. MEG3 overexpression could relieve the inhibitory effect on SRF and myoblast differentiation induced by miR-423-5p. In addition, results of RNA immunoprecipitation analysis suggested that MEG3 could act as a ceRNA for miR-423-5p. Our findings initially established a novel connection among MEG3, miR-423-5p, and SRF in porcine satellite cell differentiation. This novel role of MEG3 may shed new light on understanding of molecular regulation of lncRNA in porcine myogenesis. MDPI 2020-02-15 /pmc/articles/PMC7072828/ /pubmed/32075310 http://dx.doi.org/10.3390/cells9020449 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Cheng, Xiaofang
Li, Long
Shi, Gaoli
Chen, Lin
Fang, Chengchi
Li, Mengxun
Li, Changchun
MEG3 Promotes Differentiation of Porcine Satellite Cells by Sponging miR-423-5p to Relieve Inhibiting Effect on SRF
title MEG3 Promotes Differentiation of Porcine Satellite Cells by Sponging miR-423-5p to Relieve Inhibiting Effect on SRF
title_full MEG3 Promotes Differentiation of Porcine Satellite Cells by Sponging miR-423-5p to Relieve Inhibiting Effect on SRF
title_fullStr MEG3 Promotes Differentiation of Porcine Satellite Cells by Sponging miR-423-5p to Relieve Inhibiting Effect on SRF
title_full_unstemmed MEG3 Promotes Differentiation of Porcine Satellite Cells by Sponging miR-423-5p to Relieve Inhibiting Effect on SRF
title_short MEG3 Promotes Differentiation of Porcine Satellite Cells by Sponging miR-423-5p to Relieve Inhibiting Effect on SRF
title_sort meg3 promotes differentiation of porcine satellite cells by sponging mir-423-5p to relieve inhibiting effect on srf
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072828/
https://www.ncbi.nlm.nih.gov/pubmed/32075310
http://dx.doi.org/10.3390/cells9020449
work_keys_str_mv AT chengxiaofang meg3promotesdifferentiationofporcinesatellitecellsbyspongingmir4235ptorelieveinhibitingeffectonsrf
AT lilong meg3promotesdifferentiationofporcinesatellitecellsbyspongingmir4235ptorelieveinhibitingeffectonsrf
AT shigaoli meg3promotesdifferentiationofporcinesatellitecellsbyspongingmir4235ptorelieveinhibitingeffectonsrf
AT chenlin meg3promotesdifferentiationofporcinesatellitecellsbyspongingmir4235ptorelieveinhibitingeffectonsrf
AT fangchengchi meg3promotesdifferentiationofporcinesatellitecellsbyspongingmir4235ptorelieveinhibitingeffectonsrf
AT limengxun meg3promotesdifferentiationofporcinesatellitecellsbyspongingmir4235ptorelieveinhibitingeffectonsrf
AT lichangchun meg3promotesdifferentiationofporcinesatellitecellsbyspongingmir4235ptorelieveinhibitingeffectonsrf