Cargando…

Topical Drug Delivery Systems Based on Bacterial Nanocellulose: Accelerated Stability Testing

Bacterial nanocellulose (BNC) membranes have enormous potential as systems for topical drug delivery due to their intrinsic biocompatibility and three-dimensional nanoporous structure, which can house all kinds of active pharmaceutical ingredients (APIs). Thus, the present study investigated the lon...

Descripción completa

Detalles Bibliográficos
Autores principales: Silva, Nuno H. C. S., Mota, Joana P., Santos de Almeida, Tânia, Carvalho, João P. F., Silvestre, Armando J. D., Vilela, Carla, Rosado, Catarina, Freire, Carmen S. R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072910/
https://www.ncbi.nlm.nih.gov/pubmed/32070054
http://dx.doi.org/10.3390/ijms21041262
Descripción
Sumario:Bacterial nanocellulose (BNC) membranes have enormous potential as systems for topical drug delivery due to their intrinsic biocompatibility and three-dimensional nanoporous structure, which can house all kinds of active pharmaceutical ingredients (APIs). Thus, the present study investigated the long-term storage stability of BNC membranes loaded with both hydrophilic and lipophilic APIs, namely, caffeine, lidocaine, ibuprofen and diclofenac. The storage stability was evaluated under accelerated testing conditions at different temperatures and relative humidity (RH), i.e., 75% RH/40 °C, 60% RH/25 °C and 0% RH/40 °C. All systems were quite stable under these storage conditions with no significant structural and morphological changes or variations in the drug release profile. The only difference observed was in the moisture-uptake, which increased with RH due to the hydrophilic nature of BNC. Furthermore, the caffeine-loaded BNC membrane was selected for in vivo cutaneous compatibility studies, where patches were applied in the volar forearm of twenty volunteers for 24 h. The cutaneous responses were assessed by non-invasive measurements and the tests revealed good compatibility for caffeine-loaded BNC membranes. These results highlight the good storage stability of the API-loaded BNC membranes and their cutaneous compatibility, which confirms the real potential of these dermal delivery systems.