Cargando…
OmixLitMiner: A Bioinformatics Tool for Prioritizing Biological Leads from ‘Omics Data Using Literature Retrieval and Data Mining
Proteomics and genomics discovery experiments generate increasingly large result tables, necessitating more researcher time to convert the biological data into new knowledge. Literature review is an important step in this process and can be tedious for large scale experiments. An informed and strate...
Autores principales: | Steffen, Pascal, Wu, Jemma, Hariharan, Shubhang, Voss, Hannah, Raghunath, Vijay, Molloy, Mark P., Schlüter, Hartmut |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073124/ https://www.ncbi.nlm.nih.gov/pubmed/32092871 http://dx.doi.org/10.3390/ijms21041374 |
Ejemplares similares
-
Omixer: multivariate and reproducible sample randomization to proactively counter batch effects in omics studies
por: Sinke, Lucy, et al.
Publicado: (2021) -
DeepOmix: A scalable and interpretable multi-omics deep learning framework and application in cancer survival analysis
por: Zhao, Lianhe, et al.
Publicado: (2021) -
d-Omix: a mixer of generic protein domain analysis tools
por: Wichadakul, Duangdao, et al.
Publicado: (2009) -
Integrating human omics data to prioritize candidate genes
por: Chen, Yong, et al.
Publicado: (2013) -
Lost in Translation (LiT)
por: Dollery, Colin T
Publicado: (2014)