Cargando…
Prognostic analysis of histopathological images using pre-trained convolutional neural networks: application to hepatocellular carcinoma
Histopathological images contain rich phenotypic descriptions of the molecular processes underlying disease progression. Convolutional neural networks, state-of-the-art image analysis techniques in computer vision, automatically learn representative features from such images which can be useful for...
Autores principales: | Lu, Liangqun, Daigle, Bernie J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073245/ https://www.ncbi.nlm.nih.gov/pubmed/32201640 http://dx.doi.org/10.7717/peerj.8668 |
Ejemplares similares
-
GEOlimma: differential expression analysis and feature selection using pre-existing microarray data
por: Lu, Liangqun, et al.
Publicado: (2021) -
Fusing pre-trained convolutional neural networks features for multi-differentiated subtypes of liver cancer on histopathological images
por: Dong, Xiaogang, et al.
Publicado: (2022) -
Residual convolutional neural network for predicting response of transarterial chemoembolization in hepatocellular carcinoma from CT imaging
por: Peng, Jie, et al.
Publicado: (2019) -
Deciphering enhancer sequence using thermodynamics-based models and convolutional neural networks
por: Dibaeinia, Payam, et al.
Publicado: (2021) -
CoCoNet—boosting RNA contact prediction by convolutional neural networks
por: Zerihun, Mehari B, et al.
Publicado: (2021)