Cargando…
Enabling automated herbarium sheet image post‐processing using neural network models for color reference chart detection
PREMISE: Large‐scale efforts to digitize herbaria have resulted in more than 18 million publicly available Plantae images on sites such as iDigBio. The automation of image post‐processing will lead to time savings in the digitization of biological specimens, as well as improvements in data quality....
Autores principales: | Ledesma, Dakila A., Powell, Caleb A., Shaw, Joey, Qin, Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073326/ https://www.ncbi.nlm.nih.gov/pubmed/32185122 http://dx.doi.org/10.1002/aps3.11331 |
Ejemplares similares
-
Performant barcode decoding for herbarium specimen images using vector‐assisted region proposals (VARP)
por: Powell, Caleb, et al.
Publicado: (2021) -
Estimating herbarium specimen digitization rates: Accounting for human experience
por: Powell, Caleb, et al.
Publicado: (2021) -
Maximizing human effort for analyzing scientific images: A case study using digitized herbarium sheets
por: Brenskelle, Laura, et al.
Publicado: (2020) -
Integrating herbarium specimen observations into global phenology data systems
por: Brenskelle, Laura, et al.
Publicado: (2019) -
Digitization protocol for scoring reproductive phenology from herbarium specimens of seed plants
por: Yost, Jennifer M., et al.
Publicado: (2018)