Cargando…
Improving lung cancer diagnosis by combining exhaled-breath data and clinical parameters
INTRODUCTION: Exhaled-breath analysis of volatile organic compounds could detect lung cancer earlier, possibly leading to improved outcomes. Combining exhaled-breath data with clinical parameters may improve lung cancer diagnosis. METHODS: Based on data from a previous multi-centre study, this artic...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
European Respiratory Society
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073409/ https://www.ncbi.nlm.nih.gov/pubmed/32201682 http://dx.doi.org/10.1183/23120541.00221-2019 |
_version_ | 1783506613688074240 |
---|---|
author | Kort, Sharina Brusse-Keizer, Marjolein Gerritsen, Jan Willem Schouwink, Hugo Citgez, Emanuel de Jongh, Frans van der Maten, Jan Samii, Suzy van den Bogart, Marco van der Palen, Job |
author_facet | Kort, Sharina Brusse-Keizer, Marjolein Gerritsen, Jan Willem Schouwink, Hugo Citgez, Emanuel de Jongh, Frans van der Maten, Jan Samii, Suzy van den Bogart, Marco van der Palen, Job |
author_sort | Kort, Sharina |
collection | PubMed |
description | INTRODUCTION: Exhaled-breath analysis of volatile organic compounds could detect lung cancer earlier, possibly leading to improved outcomes. Combining exhaled-breath data with clinical parameters may improve lung cancer diagnosis. METHODS: Based on data from a previous multi-centre study, this article reports additional analyses. 138 subjects with non-small cell lung cancer (NSCLC) and 143 controls without NSCLC breathed into the Aeonose. The diagnostic accuracy, presented as area under the receiver operating characteristic curve (AUC-ROC), of the Aeonose itself was compared with 1) performing a multivariate logistic regression analysis of the distinct clinical parameters obtained, and 2) using this clinical information beforehand in the training process of the artificial neural network (ANN) for the breath analysis. RESULTS: NSCLC patients (mean±sd age 67.1±9.1 years, 58% male) were compared with controls (62.1±7.0 years, 40.6% male). The AUC-ROC of the classification value of the Aeonose itself was 0.75 (95% CI 0.69–0.81). Adding age, number of pack-years and presence of COPD to this value in a multivariate regression analysis resulted in an improved performance with an AUC-ROC of 0.86 (95% CI 0.81–0.90). Adding these clinical variables beforehand to the ANN for classifying the breath print also led to an improved performance with an AUC-ROC of 0.84 (95% CI 0.79–0.89). CONCLUSIONS: Adding readily available clinical information to the classification value of exhaled-breath analysis with the Aeonose, either post hoc in a multivariate regression analysis or a priori to the ANN, significantly improves the diagnostic accuracy to detect the presence or absence of lung cancer. |
format | Online Article Text |
id | pubmed-7073409 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | European Respiratory Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-70734092020-03-20 Improving lung cancer diagnosis by combining exhaled-breath data and clinical parameters Kort, Sharina Brusse-Keizer, Marjolein Gerritsen, Jan Willem Schouwink, Hugo Citgez, Emanuel de Jongh, Frans van der Maten, Jan Samii, Suzy van den Bogart, Marco van der Palen, Job ERJ Open Res Original Articles INTRODUCTION: Exhaled-breath analysis of volatile organic compounds could detect lung cancer earlier, possibly leading to improved outcomes. Combining exhaled-breath data with clinical parameters may improve lung cancer diagnosis. METHODS: Based on data from a previous multi-centre study, this article reports additional analyses. 138 subjects with non-small cell lung cancer (NSCLC) and 143 controls without NSCLC breathed into the Aeonose. The diagnostic accuracy, presented as area under the receiver operating characteristic curve (AUC-ROC), of the Aeonose itself was compared with 1) performing a multivariate logistic regression analysis of the distinct clinical parameters obtained, and 2) using this clinical information beforehand in the training process of the artificial neural network (ANN) for the breath analysis. RESULTS: NSCLC patients (mean±sd age 67.1±9.1 years, 58% male) were compared with controls (62.1±7.0 years, 40.6% male). The AUC-ROC of the classification value of the Aeonose itself was 0.75 (95% CI 0.69–0.81). Adding age, number of pack-years and presence of COPD to this value in a multivariate regression analysis resulted in an improved performance with an AUC-ROC of 0.86 (95% CI 0.81–0.90). Adding these clinical variables beforehand to the ANN for classifying the breath print also led to an improved performance with an AUC-ROC of 0.84 (95% CI 0.79–0.89). CONCLUSIONS: Adding readily available clinical information to the classification value of exhaled-breath analysis with the Aeonose, either post hoc in a multivariate regression analysis or a priori to the ANN, significantly improves the diagnostic accuracy to detect the presence or absence of lung cancer. European Respiratory Society 2020-03-16 /pmc/articles/PMC7073409/ /pubmed/32201682 http://dx.doi.org/10.1183/23120541.00221-2019 Text en Copyright ©ERS 2020 http://creativecommons.org/licenses/by-nc/4.0/This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. |
spellingShingle | Original Articles Kort, Sharina Brusse-Keizer, Marjolein Gerritsen, Jan Willem Schouwink, Hugo Citgez, Emanuel de Jongh, Frans van der Maten, Jan Samii, Suzy van den Bogart, Marco van der Palen, Job Improving lung cancer diagnosis by combining exhaled-breath data and clinical parameters |
title | Improving lung cancer diagnosis by combining exhaled-breath data and clinical parameters |
title_full | Improving lung cancer diagnosis by combining exhaled-breath data and clinical parameters |
title_fullStr | Improving lung cancer diagnosis by combining exhaled-breath data and clinical parameters |
title_full_unstemmed | Improving lung cancer diagnosis by combining exhaled-breath data and clinical parameters |
title_short | Improving lung cancer diagnosis by combining exhaled-breath data and clinical parameters |
title_sort | improving lung cancer diagnosis by combining exhaled-breath data and clinical parameters |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073409/ https://www.ncbi.nlm.nih.gov/pubmed/32201682 http://dx.doi.org/10.1183/23120541.00221-2019 |
work_keys_str_mv | AT kortsharina improvinglungcancerdiagnosisbycombiningexhaledbreathdataandclinicalparameters AT brussekeizermarjolein improvinglungcancerdiagnosisbycombiningexhaledbreathdataandclinicalparameters AT gerritsenjanwillem improvinglungcancerdiagnosisbycombiningexhaledbreathdataandclinicalparameters AT schouwinkhugo improvinglungcancerdiagnosisbycombiningexhaledbreathdataandclinicalparameters AT citgezemanuel improvinglungcancerdiagnosisbycombiningexhaledbreathdataandclinicalparameters AT dejonghfrans improvinglungcancerdiagnosisbycombiningexhaledbreathdataandclinicalparameters AT vandermatenjan improvinglungcancerdiagnosisbycombiningexhaledbreathdataandclinicalparameters AT samiisuzy improvinglungcancerdiagnosisbycombiningexhaledbreathdataandclinicalparameters AT vandenbogartmarco improvinglungcancerdiagnosisbycombiningexhaledbreathdataandclinicalparameters AT vanderpalenjob improvinglungcancerdiagnosisbycombiningexhaledbreathdataandclinicalparameters |