Cargando…

Improving lung cancer diagnosis by combining exhaled-breath data and clinical parameters

INTRODUCTION: Exhaled-breath analysis of volatile organic compounds could detect lung cancer earlier, possibly leading to improved outcomes. Combining exhaled-breath data with clinical parameters may improve lung cancer diagnosis. METHODS: Based on data from a previous multi-centre study, this artic...

Descripción completa

Detalles Bibliográficos
Autores principales: Kort, Sharina, Brusse-Keizer, Marjolein, Gerritsen, Jan Willem, Schouwink, Hugo, Citgez, Emanuel, de Jongh, Frans, van der Maten, Jan, Samii, Suzy, van den Bogart, Marco, van der Palen, Job
Formato: Online Artículo Texto
Lenguaje:English
Publicado: European Respiratory Society 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073409/
https://www.ncbi.nlm.nih.gov/pubmed/32201682
http://dx.doi.org/10.1183/23120541.00221-2019
_version_ 1783506613688074240
author Kort, Sharina
Brusse-Keizer, Marjolein
Gerritsen, Jan Willem
Schouwink, Hugo
Citgez, Emanuel
de Jongh, Frans
van der Maten, Jan
Samii, Suzy
van den Bogart, Marco
van der Palen, Job
author_facet Kort, Sharina
Brusse-Keizer, Marjolein
Gerritsen, Jan Willem
Schouwink, Hugo
Citgez, Emanuel
de Jongh, Frans
van der Maten, Jan
Samii, Suzy
van den Bogart, Marco
van der Palen, Job
author_sort Kort, Sharina
collection PubMed
description INTRODUCTION: Exhaled-breath analysis of volatile organic compounds could detect lung cancer earlier, possibly leading to improved outcomes. Combining exhaled-breath data with clinical parameters may improve lung cancer diagnosis. METHODS: Based on data from a previous multi-centre study, this article reports additional analyses. 138 subjects with non-small cell lung cancer (NSCLC) and 143 controls without NSCLC breathed into the Aeonose. The diagnostic accuracy, presented as area under the receiver operating characteristic curve (AUC-ROC), of the Aeonose itself was compared with 1) performing a multivariate logistic regression analysis of the distinct clinical parameters obtained, and 2) using this clinical information beforehand in the training process of the artificial neural network (ANN) for the breath analysis. RESULTS: NSCLC patients (mean±sd age 67.1±9.1 years, 58% male) were compared with controls (62.1±7.0 years, 40.6% male). The AUC-ROC of the classification value of the Aeonose itself was 0.75 (95% CI 0.69–0.81). Adding age, number of pack-years and presence of COPD to this value in a multivariate regression analysis resulted in an improved performance with an AUC-ROC of 0.86 (95% CI 0.81–0.90). Adding these clinical variables beforehand to the ANN for classifying the breath print also led to an improved performance with an AUC-ROC of 0.84 (95% CI 0.79–0.89). CONCLUSIONS: Adding readily available clinical information to the classification value of exhaled-breath analysis with the Aeonose, either post hoc in a multivariate regression analysis or a priori to the ANN, significantly improves the diagnostic accuracy to detect the presence or absence of lung cancer.
format Online
Article
Text
id pubmed-7073409
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher European Respiratory Society
record_format MEDLINE/PubMed
spelling pubmed-70734092020-03-20 Improving lung cancer diagnosis by combining exhaled-breath data and clinical parameters Kort, Sharina Brusse-Keizer, Marjolein Gerritsen, Jan Willem Schouwink, Hugo Citgez, Emanuel de Jongh, Frans van der Maten, Jan Samii, Suzy van den Bogart, Marco van der Palen, Job ERJ Open Res Original Articles INTRODUCTION: Exhaled-breath analysis of volatile organic compounds could detect lung cancer earlier, possibly leading to improved outcomes. Combining exhaled-breath data with clinical parameters may improve lung cancer diagnosis. METHODS: Based on data from a previous multi-centre study, this article reports additional analyses. 138 subjects with non-small cell lung cancer (NSCLC) and 143 controls without NSCLC breathed into the Aeonose. The diagnostic accuracy, presented as area under the receiver operating characteristic curve (AUC-ROC), of the Aeonose itself was compared with 1) performing a multivariate logistic regression analysis of the distinct clinical parameters obtained, and 2) using this clinical information beforehand in the training process of the artificial neural network (ANN) for the breath analysis. RESULTS: NSCLC patients (mean±sd age 67.1±9.1 years, 58% male) were compared with controls (62.1±7.0 years, 40.6% male). The AUC-ROC of the classification value of the Aeonose itself was 0.75 (95% CI 0.69–0.81). Adding age, number of pack-years and presence of COPD to this value in a multivariate regression analysis resulted in an improved performance with an AUC-ROC of 0.86 (95% CI 0.81–0.90). Adding these clinical variables beforehand to the ANN for classifying the breath print also led to an improved performance with an AUC-ROC of 0.84 (95% CI 0.79–0.89). CONCLUSIONS: Adding readily available clinical information to the classification value of exhaled-breath analysis with the Aeonose, either post hoc in a multivariate regression analysis or a priori to the ANN, significantly improves the diagnostic accuracy to detect the presence or absence of lung cancer. European Respiratory Society 2020-03-16 /pmc/articles/PMC7073409/ /pubmed/32201682 http://dx.doi.org/10.1183/23120541.00221-2019 Text en Copyright ©ERS 2020 http://creativecommons.org/licenses/by-nc/4.0/This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0.
spellingShingle Original Articles
Kort, Sharina
Brusse-Keizer, Marjolein
Gerritsen, Jan Willem
Schouwink, Hugo
Citgez, Emanuel
de Jongh, Frans
van der Maten, Jan
Samii, Suzy
van den Bogart, Marco
van der Palen, Job
Improving lung cancer diagnosis by combining exhaled-breath data and clinical parameters
title Improving lung cancer diagnosis by combining exhaled-breath data and clinical parameters
title_full Improving lung cancer diagnosis by combining exhaled-breath data and clinical parameters
title_fullStr Improving lung cancer diagnosis by combining exhaled-breath data and clinical parameters
title_full_unstemmed Improving lung cancer diagnosis by combining exhaled-breath data and clinical parameters
title_short Improving lung cancer diagnosis by combining exhaled-breath data and clinical parameters
title_sort improving lung cancer diagnosis by combining exhaled-breath data and clinical parameters
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073409/
https://www.ncbi.nlm.nih.gov/pubmed/32201682
http://dx.doi.org/10.1183/23120541.00221-2019
work_keys_str_mv AT kortsharina improvinglungcancerdiagnosisbycombiningexhaledbreathdataandclinicalparameters
AT brussekeizermarjolein improvinglungcancerdiagnosisbycombiningexhaledbreathdataandclinicalparameters
AT gerritsenjanwillem improvinglungcancerdiagnosisbycombiningexhaledbreathdataandclinicalparameters
AT schouwinkhugo improvinglungcancerdiagnosisbycombiningexhaledbreathdataandclinicalparameters
AT citgezemanuel improvinglungcancerdiagnosisbycombiningexhaledbreathdataandclinicalparameters
AT dejonghfrans improvinglungcancerdiagnosisbycombiningexhaledbreathdataandclinicalparameters
AT vandermatenjan improvinglungcancerdiagnosisbycombiningexhaledbreathdataandclinicalparameters
AT samiisuzy improvinglungcancerdiagnosisbycombiningexhaledbreathdataandclinicalparameters
AT vandenbogartmarco improvinglungcancerdiagnosisbycombiningexhaledbreathdataandclinicalparameters
AT vanderpalenjob improvinglungcancerdiagnosisbycombiningexhaledbreathdataandclinicalparameters