Cargando…
Is the Arginase Pathway a Novel Therapeutic Avenue for Diabetic Retinopathy?
Diabetic retinopathy (DR) is the leading cause of blindness in working age Americans. Clinicians diagnose DR based on its characteristic vascular pathology, which is evident upon clinical exam. However, extensive research has shown that diabetes causes significant neurovascular dysfunction prior to...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073619/ https://www.ncbi.nlm.nih.gov/pubmed/32033258 http://dx.doi.org/10.3390/jcm9020425 |
_version_ | 1783506659947053056 |
---|---|
author | Shosha, Esraa Fouda, Abdelrahman Y. Narayanan, S. Priya Caldwell, R. William Caldwell, Ruth B. |
author_facet | Shosha, Esraa Fouda, Abdelrahman Y. Narayanan, S. Priya Caldwell, R. William Caldwell, Ruth B. |
author_sort | Shosha, Esraa |
collection | PubMed |
description | Diabetic retinopathy (DR) is the leading cause of blindness in working age Americans. Clinicians diagnose DR based on its characteristic vascular pathology, which is evident upon clinical exam. However, extensive research has shown that diabetes causes significant neurovascular dysfunction prior to the development of clinically apparent vascular damage. While laser photocoagulation and/or anti-vascular endothelial growth factor (VEGF) therapies are often effective for limiting the late-stage vascular pathology, we still do not have an effective treatment to limit the neurovascular dysfunction or promote repair during the early stages of DR. This review addresses the role of arginase as a mediator of retinal neurovascular injury and therapeutic target for early stage DR. Arginase is the ureohydrolase enzyme that catalyzes the production of L-ornithine and urea from L-arginine. Arginase upregulation has been associated with inflammation, oxidative stress, and peripheral vascular dysfunction in models of both types of diabetes. The arginase enzyme has been identified as a therapeutic target in cardiovascular disease and central nervous system disease including stroke and ischemic retinopathies. Here, we discuss and review the literature on arginase-induced retinal neurovascular dysfunction in models of DR. We also speculate on the therapeutic potential of arginase in DR and its related underlying mechanisms. |
format | Online Article Text |
id | pubmed-7073619 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70736192020-03-19 Is the Arginase Pathway a Novel Therapeutic Avenue for Diabetic Retinopathy? Shosha, Esraa Fouda, Abdelrahman Y. Narayanan, S. Priya Caldwell, R. William Caldwell, Ruth B. J Clin Med Review Diabetic retinopathy (DR) is the leading cause of blindness in working age Americans. Clinicians diagnose DR based on its characteristic vascular pathology, which is evident upon clinical exam. However, extensive research has shown that diabetes causes significant neurovascular dysfunction prior to the development of clinically apparent vascular damage. While laser photocoagulation and/or anti-vascular endothelial growth factor (VEGF) therapies are often effective for limiting the late-stage vascular pathology, we still do not have an effective treatment to limit the neurovascular dysfunction or promote repair during the early stages of DR. This review addresses the role of arginase as a mediator of retinal neurovascular injury and therapeutic target for early stage DR. Arginase is the ureohydrolase enzyme that catalyzes the production of L-ornithine and urea from L-arginine. Arginase upregulation has been associated with inflammation, oxidative stress, and peripheral vascular dysfunction in models of both types of diabetes. The arginase enzyme has been identified as a therapeutic target in cardiovascular disease and central nervous system disease including stroke and ischemic retinopathies. Here, we discuss and review the literature on arginase-induced retinal neurovascular dysfunction in models of DR. We also speculate on the therapeutic potential of arginase in DR and its related underlying mechanisms. MDPI 2020-02-05 /pmc/articles/PMC7073619/ /pubmed/32033258 http://dx.doi.org/10.3390/jcm9020425 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Shosha, Esraa Fouda, Abdelrahman Y. Narayanan, S. Priya Caldwell, R. William Caldwell, Ruth B. Is the Arginase Pathway a Novel Therapeutic Avenue for Diabetic Retinopathy? |
title | Is the Arginase Pathway a Novel Therapeutic Avenue for Diabetic Retinopathy? |
title_full | Is the Arginase Pathway a Novel Therapeutic Avenue for Diabetic Retinopathy? |
title_fullStr | Is the Arginase Pathway a Novel Therapeutic Avenue for Diabetic Retinopathy? |
title_full_unstemmed | Is the Arginase Pathway a Novel Therapeutic Avenue for Diabetic Retinopathy? |
title_short | Is the Arginase Pathway a Novel Therapeutic Avenue for Diabetic Retinopathy? |
title_sort | is the arginase pathway a novel therapeutic avenue for diabetic retinopathy? |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073619/ https://www.ncbi.nlm.nih.gov/pubmed/32033258 http://dx.doi.org/10.3390/jcm9020425 |
work_keys_str_mv | AT shoshaesraa isthearginasepathwayanoveltherapeuticavenuefordiabeticretinopathy AT foudaabdelrahmany isthearginasepathwayanoveltherapeuticavenuefordiabeticretinopathy AT narayananspriya isthearginasepathwayanoveltherapeuticavenuefordiabeticretinopathy AT caldwellrwilliam isthearginasepathwayanoveltherapeuticavenuefordiabeticretinopathy AT caldwellruthb isthearginasepathwayanoveltherapeuticavenuefordiabeticretinopathy |