Cargando…

Characteristics of Microsatellites Mined from Transcriptome Data and the Development of Novel Markers in Paeonia lactiflora

The insufficient number of available simple sequence repeats (SSRs) inhibits genetic research on and molecular breeding of Paeonia lactiflora, a flowering crop with great economic value. The objective of this study was to develop SSRs for P. lactiflora with Illumina RNA sequencing and assess the rol...

Descripción completa

Detalles Bibliográficos
Autores principales: Wan, Yingling, Zhang, Min, Hong, Aiying, Zhang, Yixuan, Liu, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073652/
https://www.ncbi.nlm.nih.gov/pubmed/32092852
http://dx.doi.org/10.3390/genes11020214
Descripción
Sumario:The insufficient number of available simple sequence repeats (SSRs) inhibits genetic research on and molecular breeding of Paeonia lactiflora, a flowering crop with great economic value. The objective of this study was to develop SSRs for P. lactiflora with Illumina RNA sequencing and assess the role of SSRs in gene regulation. The results showed that dinucleotides with AG/CT repeats were the most abundant type of repeat motif in P. lactiflora and were preferentially distributed in untranslated regions. Significant differences in SSR size were observed among motif types and locations. A large number of unigenes containing SSRs participated in catalytic activity, metabolic processes and cellular processes, and 28.16% of all transcription factors and 21.74% of hub genes for inflorescence stem straightness were found to contain SSRs. Successful amplification was achieved with 89.05% of 960 pairs of SSR primers, 55.83% of which were polymorphic, and most of the 46 tested primers had a high level of transferability to the genus Paeonia. Principal component and cluster dendrogram analyses produced results consistent with known genealogical relationships. This study provides a set of SSRs with abundant information for future accession identification, marker-trait association and molecular assisted breeding in P. lactiflora.