Cargando…
Testing Differential Gene Networks under Nonparanormal Graphical Models with False Discovery Rate Control
The nonparanormal graphical model has emerged as an important tool for modeling dependency structure between variables because it is flexible to non-Gaussian data while maintaining the good interpretability and computational convenience of Gaussian graphical models. In this paper, we consider the pr...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073847/ https://www.ncbi.nlm.nih.gov/pubmed/32033447 http://dx.doi.org/10.3390/genes11020167 |
_version_ | 1783506712270995456 |
---|---|
author | Zhang, Qingyang |
author_facet | Zhang, Qingyang |
author_sort | Zhang, Qingyang |
collection | PubMed |
description | The nonparanormal graphical model has emerged as an important tool for modeling dependency structure between variables because it is flexible to non-Gaussian data while maintaining the good interpretability and computational convenience of Gaussian graphical models. In this paper, we consider the problem of detecting differential substructure between two nonparanormal graphical models with false discovery rate control. We construct a new statistic based on a truncated estimator of the unknown transformation functions, together with a bias-corrected sample covariance. Furthermore, we show that the new test statistic converges to the same distribution as its oracle counterpart does. Both synthetic data and real cancer genomic data are used to illustrate the promise of the new method. Our proposed testing framework is simple and scalable, facilitating its applications to large-scale data. The computational pipeline has been implemented in the R package DNetFinder, which is freely available through the Comprehensive R Archive Network. |
format | Online Article Text |
id | pubmed-7073847 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70738472020-03-19 Testing Differential Gene Networks under Nonparanormal Graphical Models with False Discovery Rate Control Zhang, Qingyang Genes (Basel) Article The nonparanormal graphical model has emerged as an important tool for modeling dependency structure between variables because it is flexible to non-Gaussian data while maintaining the good interpretability and computational convenience of Gaussian graphical models. In this paper, we consider the problem of detecting differential substructure between two nonparanormal graphical models with false discovery rate control. We construct a new statistic based on a truncated estimator of the unknown transformation functions, together with a bias-corrected sample covariance. Furthermore, we show that the new test statistic converges to the same distribution as its oracle counterpart does. Both synthetic data and real cancer genomic data are used to illustrate the promise of the new method. Our proposed testing framework is simple and scalable, facilitating its applications to large-scale data. The computational pipeline has been implemented in the R package DNetFinder, which is freely available through the Comprehensive R Archive Network. MDPI 2020-02-05 /pmc/articles/PMC7073847/ /pubmed/32033447 http://dx.doi.org/10.3390/genes11020167 Text en © 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Qingyang Testing Differential Gene Networks under Nonparanormal Graphical Models with False Discovery Rate Control |
title | Testing Differential Gene Networks under Nonparanormal Graphical Models with False Discovery Rate Control |
title_full | Testing Differential Gene Networks under Nonparanormal Graphical Models with False Discovery Rate Control |
title_fullStr | Testing Differential Gene Networks under Nonparanormal Graphical Models with False Discovery Rate Control |
title_full_unstemmed | Testing Differential Gene Networks under Nonparanormal Graphical Models with False Discovery Rate Control |
title_short | Testing Differential Gene Networks under Nonparanormal Graphical Models with False Discovery Rate Control |
title_sort | testing differential gene networks under nonparanormal graphical models with false discovery rate control |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073847/ https://www.ncbi.nlm.nih.gov/pubmed/32033447 http://dx.doi.org/10.3390/genes11020167 |
work_keys_str_mv | AT zhangqingyang testingdifferentialgenenetworksundernonparanormalgraphicalmodelswithfalsediscoveryratecontrol |