Cargando…
Testing Differential Gene Networks under Nonparanormal Graphical Models with False Discovery Rate Control
The nonparanormal graphical model has emerged as an important tool for modeling dependency structure between variables because it is flexible to non-Gaussian data while maintaining the good interpretability and computational convenience of Gaussian graphical models. In this paper, we consider the pr...
Autor principal: | Zhang, Qingyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073847/ https://www.ncbi.nlm.nih.gov/pubmed/32033447 http://dx.doi.org/10.3390/genes11020167 |
Ejemplares similares
-
Regression‐based Bayesian estimation and structure learning for nonparanormal graphical models
por: Mulgrave, Jami J., et al.
Publicado: (2022) -
Model-free feature screening for categorical outcomes: Nonlinear effect detection and false discovery rate control
por: Zhang, Qingyang, et al.
Publicado: (2019) -
Testing Jumps via False Discovery Rate Control
por: Yen, Yu-Min
Publicado: (2013) -
Controlling the Rate of GWAS False Discoveries
por: Brzyski, Damian, et al.
Publicado: (2017) -
Bootstrapping of gene-expression data improves and controls the false discovery rate of differentially expressed genes
por: Meuwissen, Theo HE, et al.
Publicado: (2004)