Cargando…
Perturbation bounds for Monte Carlo within Metropolis via restricted approximations
The Monte Carlo within Metropolis (MCwM) algorithm, interpreted as a perturbed Metropolis–Hastings (MH) algorithm, provides an approach for approximate sampling when the target distribution is intractable. Assuming the unperturbed Markov chain is geometrically ergodic, we show explicit estimates of...
Autores principales: | Medina-Aguayo, Felipe, Rudolf, Daniel, Schweizer, Nikolaus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074005/ https://www.ncbi.nlm.nih.gov/pubmed/32255890 http://dx.doi.org/10.1016/j.spa.2019.06.015 |
Ejemplares similares
-
Sequential Monte Carlo with transformations
por: Everitt, Richard G., et al.
Publicado: (2019) -
Note on the metropolis Monte Carlo method on random lattices
por: Tsuda, N, et al.
Publicado: (1994) -
Approximating integrals via Monte Carlo and deterministic methods
por: Evans, Michael, et al.
Publicado: (2000) -
Conference on Monte Carlo Method in the Physical Sciences : Festschrift 50th Anniversary of the Metropolis Algorithm
por: Gubernatis, James E
Publicado: (2003) -
Solving Equations of Motion by Using Monte Carlo Metropolis: Novel Method Via Random Paths Sampling and the Maximum Caliber Principle
por: González Diaz, Diego, et al.
Publicado: (2020)