Cargando…

The Influence of Composition and Manufacturing Approach on the Physical and Rehydration Properties of Milk Protein Concentrate Powders

This study investigated the physical and rehydration properties of milk protein concentrate (MPC) powders with five different protein contents (i.e., 38.9, 53.7, 63.6, 74.1, and 84.7%, w/w) prepared by recombining the ultrafiltration (UF) retentate and UF permeate of skim milk. Powder density and fl...

Descripción completa

Detalles Bibliográficos
Autores principales: McSweeney, David J., Maidannyk, Valentyn, Montgomery, Sharon, O’Mahony, James A., McCarthy, Noel A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074018/
https://www.ncbi.nlm.nih.gov/pubmed/32098298
http://dx.doi.org/10.3390/foods9020236
Descripción
Sumario:This study investigated the physical and rehydration properties of milk protein concentrate (MPC) powders with five different protein contents (i.e., 38.9, 53.7, 63.6, 74.1, and 84.7%, w/w) prepared by recombining the ultrafiltration (UF) retentate and UF permeate of skim milk. Powder density and flowability increased, while the powder particle size decreased with decreasing powder protein content. The amount of non-wetting MPC powder decreased with decreasing protein content, demonstrating greater wettability for lower protein powders. At protein contents >65% (w/w), the dispersibility and solubility of the powders decreased significantly, likely due to the greater hydrophobic interactions between casein proteins and a lower concentration of lactose. Therefore, as the protein content of the MPC powders was decreased, their rehydration properties improved. The results obtained in this study provide novel insights into the relationship between the composition of recombined UF retentate and UF permeate streams on the subsequent powder particle size, density, and rehydration properties, and demonstrate that such powders possess similar properties to those prepared using conventional direct membrane filtration.