Cargando…
A Data Mining Metabolomics Exploration of Glaucoma
Glaucoma is an age related disease characterized by the progressive loss of retinal ganglion cells, which are the neurons that transduce the visual information from the retina to the brain. It is the leading cause of irreversible blindness worldwide. To gain further insights into primary open-angle...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074047/ https://www.ncbi.nlm.nih.gov/pubmed/32012845 http://dx.doi.org/10.3390/metabo10020049 |
_version_ | 1783506749863493632 |
---|---|
author | Kouassi Nzoughet, Judith Guehlouz, Khadidja Leruez, Stéphanie Gohier, Philippe Bocca, Cinzia Muller, Jeanne Blanchet, Odile Bonneau, Dominique Simard, Gilles Milea, Dan Procaccio, Vincent Lenaers, Guy Chao de la Barca, Juan M. Reynier, Pascal |
author_facet | Kouassi Nzoughet, Judith Guehlouz, Khadidja Leruez, Stéphanie Gohier, Philippe Bocca, Cinzia Muller, Jeanne Blanchet, Odile Bonneau, Dominique Simard, Gilles Milea, Dan Procaccio, Vincent Lenaers, Guy Chao de la Barca, Juan M. Reynier, Pascal |
author_sort | Kouassi Nzoughet, Judith |
collection | PubMed |
description | Glaucoma is an age related disease characterized by the progressive loss of retinal ganglion cells, which are the neurons that transduce the visual information from the retina to the brain. It is the leading cause of irreversible blindness worldwide. To gain further insights into primary open-angle glaucoma (POAG) pathophysiology, we performed a non-targeted metabolomics analysis on the plasma from POAG patients (n = 34) and age- and sex-matched controls (n = 30). We investigated the differential signature of POAG plasma compared to controls, using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS). A data mining strategy, combining a filtering method with threshold criterion, a wrapper method with iterative selection, and an embedded method with penalization constraint, was used. These strategies are most often used separately in metabolomics studies, with each of them having their own limitations. We opted for a synergistic approach as a mean to unravel the most relevant metabolomics signature. We identified a set of nine metabolites, namely: nicotinamide, hypoxanthine, xanthine, and 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline with decreased concentrations and N-acetyl-L-Leucine, arginine, RAC-glycerol 1-myristate, 1-oleoyl-RAC-glycerol, cystathionine with increased concentrations in POAG; the modification of nicotinamide, N-acetyl-L-Leucine, and arginine concentrations being the most discriminant. Our findings open up therapeutic perspectives for the diagnosis and treatment of POAG. |
format | Online Article Text |
id | pubmed-7074047 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70740472020-03-19 A Data Mining Metabolomics Exploration of Glaucoma Kouassi Nzoughet, Judith Guehlouz, Khadidja Leruez, Stéphanie Gohier, Philippe Bocca, Cinzia Muller, Jeanne Blanchet, Odile Bonneau, Dominique Simard, Gilles Milea, Dan Procaccio, Vincent Lenaers, Guy Chao de la Barca, Juan M. Reynier, Pascal Metabolites Article Glaucoma is an age related disease characterized by the progressive loss of retinal ganglion cells, which are the neurons that transduce the visual information from the retina to the brain. It is the leading cause of irreversible blindness worldwide. To gain further insights into primary open-angle glaucoma (POAG) pathophysiology, we performed a non-targeted metabolomics analysis on the plasma from POAG patients (n = 34) and age- and sex-matched controls (n = 30). We investigated the differential signature of POAG plasma compared to controls, using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS). A data mining strategy, combining a filtering method with threshold criterion, a wrapper method with iterative selection, and an embedded method with penalization constraint, was used. These strategies are most often used separately in metabolomics studies, with each of them having their own limitations. We opted for a synergistic approach as a mean to unravel the most relevant metabolomics signature. We identified a set of nine metabolites, namely: nicotinamide, hypoxanthine, xanthine, and 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline with decreased concentrations and N-acetyl-L-Leucine, arginine, RAC-glycerol 1-myristate, 1-oleoyl-RAC-glycerol, cystathionine with increased concentrations in POAG; the modification of nicotinamide, N-acetyl-L-Leucine, and arginine concentrations being the most discriminant. Our findings open up therapeutic perspectives for the diagnosis and treatment of POAG. MDPI 2020-01-28 /pmc/articles/PMC7074047/ /pubmed/32012845 http://dx.doi.org/10.3390/metabo10020049 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kouassi Nzoughet, Judith Guehlouz, Khadidja Leruez, Stéphanie Gohier, Philippe Bocca, Cinzia Muller, Jeanne Blanchet, Odile Bonneau, Dominique Simard, Gilles Milea, Dan Procaccio, Vincent Lenaers, Guy Chao de la Barca, Juan M. Reynier, Pascal A Data Mining Metabolomics Exploration of Glaucoma |
title | A Data Mining Metabolomics Exploration of Glaucoma |
title_full | A Data Mining Metabolomics Exploration of Glaucoma |
title_fullStr | A Data Mining Metabolomics Exploration of Glaucoma |
title_full_unstemmed | A Data Mining Metabolomics Exploration of Glaucoma |
title_short | A Data Mining Metabolomics Exploration of Glaucoma |
title_sort | data mining metabolomics exploration of glaucoma |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074047/ https://www.ncbi.nlm.nih.gov/pubmed/32012845 http://dx.doi.org/10.3390/metabo10020049 |
work_keys_str_mv | AT kouassinzoughetjudith adataminingmetabolomicsexplorationofglaucoma AT guehlouzkhadidja adataminingmetabolomicsexplorationofglaucoma AT leruezstephanie adataminingmetabolomicsexplorationofglaucoma AT gohierphilippe adataminingmetabolomicsexplorationofglaucoma AT boccacinzia adataminingmetabolomicsexplorationofglaucoma AT mullerjeanne adataminingmetabolomicsexplorationofglaucoma AT blanchetodile adataminingmetabolomicsexplorationofglaucoma AT bonneaudominique adataminingmetabolomicsexplorationofglaucoma AT simardgilles adataminingmetabolomicsexplorationofglaucoma AT mileadan adataminingmetabolomicsexplorationofglaucoma AT procacciovincent adataminingmetabolomicsexplorationofglaucoma AT lenaersguy adataminingmetabolomicsexplorationofglaucoma AT chaodelabarcajuanm adataminingmetabolomicsexplorationofglaucoma AT reynierpascal adataminingmetabolomicsexplorationofglaucoma AT kouassinzoughetjudith dataminingmetabolomicsexplorationofglaucoma AT guehlouzkhadidja dataminingmetabolomicsexplorationofglaucoma AT leruezstephanie dataminingmetabolomicsexplorationofglaucoma AT gohierphilippe dataminingmetabolomicsexplorationofglaucoma AT boccacinzia dataminingmetabolomicsexplorationofglaucoma AT mullerjeanne dataminingmetabolomicsexplorationofglaucoma AT blanchetodile dataminingmetabolomicsexplorationofglaucoma AT bonneaudominique dataminingmetabolomicsexplorationofglaucoma AT simardgilles dataminingmetabolomicsexplorationofglaucoma AT mileadan dataminingmetabolomicsexplorationofglaucoma AT procacciovincent dataminingmetabolomicsexplorationofglaucoma AT lenaersguy dataminingmetabolomicsexplorationofglaucoma AT chaodelabarcajuanm dataminingmetabolomicsexplorationofglaucoma AT reynierpascal dataminingmetabolomicsexplorationofglaucoma |