Cargando…

A Data Mining Metabolomics Exploration of Glaucoma

Glaucoma is an age related disease characterized by the progressive loss of retinal ganglion cells, which are the neurons that transduce the visual information from the retina to the brain. It is the leading cause of irreversible blindness worldwide. To gain further insights into primary open-angle...

Descripción completa

Detalles Bibliográficos
Autores principales: Kouassi Nzoughet, Judith, Guehlouz, Khadidja, Leruez, Stéphanie, Gohier, Philippe, Bocca, Cinzia, Muller, Jeanne, Blanchet, Odile, Bonneau, Dominique, Simard, Gilles, Milea, Dan, Procaccio, Vincent, Lenaers, Guy, Chao de la Barca, Juan M., Reynier, Pascal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074047/
https://www.ncbi.nlm.nih.gov/pubmed/32012845
http://dx.doi.org/10.3390/metabo10020049
_version_ 1783506749863493632
author Kouassi Nzoughet, Judith
Guehlouz, Khadidja
Leruez, Stéphanie
Gohier, Philippe
Bocca, Cinzia
Muller, Jeanne
Blanchet, Odile
Bonneau, Dominique
Simard, Gilles
Milea, Dan
Procaccio, Vincent
Lenaers, Guy
Chao de la Barca, Juan M.
Reynier, Pascal
author_facet Kouassi Nzoughet, Judith
Guehlouz, Khadidja
Leruez, Stéphanie
Gohier, Philippe
Bocca, Cinzia
Muller, Jeanne
Blanchet, Odile
Bonneau, Dominique
Simard, Gilles
Milea, Dan
Procaccio, Vincent
Lenaers, Guy
Chao de la Barca, Juan M.
Reynier, Pascal
author_sort Kouassi Nzoughet, Judith
collection PubMed
description Glaucoma is an age related disease characterized by the progressive loss of retinal ganglion cells, which are the neurons that transduce the visual information from the retina to the brain. It is the leading cause of irreversible blindness worldwide. To gain further insights into primary open-angle glaucoma (POAG) pathophysiology, we performed a non-targeted metabolomics analysis on the plasma from POAG patients (n = 34) and age- and sex-matched controls (n = 30). We investigated the differential signature of POAG plasma compared to controls, using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS). A data mining strategy, combining a filtering method with threshold criterion, a wrapper method with iterative selection, and an embedded method with penalization constraint, was used. These strategies are most often used separately in metabolomics studies, with each of them having their own limitations. We opted for a synergistic approach as a mean to unravel the most relevant metabolomics signature. We identified a set of nine metabolites, namely: nicotinamide, hypoxanthine, xanthine, and 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline with decreased concentrations and N-acetyl-L-Leucine, arginine, RAC-glycerol 1-myristate, 1-oleoyl-RAC-glycerol, cystathionine with increased concentrations in POAG; the modification of nicotinamide, N-acetyl-L-Leucine, and arginine concentrations being the most discriminant. Our findings open up therapeutic perspectives for the diagnosis and treatment of POAG.
format Online
Article
Text
id pubmed-7074047
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-70740472020-03-19 A Data Mining Metabolomics Exploration of Glaucoma Kouassi Nzoughet, Judith Guehlouz, Khadidja Leruez, Stéphanie Gohier, Philippe Bocca, Cinzia Muller, Jeanne Blanchet, Odile Bonneau, Dominique Simard, Gilles Milea, Dan Procaccio, Vincent Lenaers, Guy Chao de la Barca, Juan M. Reynier, Pascal Metabolites Article Glaucoma is an age related disease characterized by the progressive loss of retinal ganglion cells, which are the neurons that transduce the visual information from the retina to the brain. It is the leading cause of irreversible blindness worldwide. To gain further insights into primary open-angle glaucoma (POAG) pathophysiology, we performed a non-targeted metabolomics analysis on the plasma from POAG patients (n = 34) and age- and sex-matched controls (n = 30). We investigated the differential signature of POAG plasma compared to controls, using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS). A data mining strategy, combining a filtering method with threshold criterion, a wrapper method with iterative selection, and an embedded method with penalization constraint, was used. These strategies are most often used separately in metabolomics studies, with each of them having their own limitations. We opted for a synergistic approach as a mean to unravel the most relevant metabolomics signature. We identified a set of nine metabolites, namely: nicotinamide, hypoxanthine, xanthine, and 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline with decreased concentrations and N-acetyl-L-Leucine, arginine, RAC-glycerol 1-myristate, 1-oleoyl-RAC-glycerol, cystathionine with increased concentrations in POAG; the modification of nicotinamide, N-acetyl-L-Leucine, and arginine concentrations being the most discriminant. Our findings open up therapeutic perspectives for the diagnosis and treatment of POAG. MDPI 2020-01-28 /pmc/articles/PMC7074047/ /pubmed/32012845 http://dx.doi.org/10.3390/metabo10020049 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kouassi Nzoughet, Judith
Guehlouz, Khadidja
Leruez, Stéphanie
Gohier, Philippe
Bocca, Cinzia
Muller, Jeanne
Blanchet, Odile
Bonneau, Dominique
Simard, Gilles
Milea, Dan
Procaccio, Vincent
Lenaers, Guy
Chao de la Barca, Juan M.
Reynier, Pascal
A Data Mining Metabolomics Exploration of Glaucoma
title A Data Mining Metabolomics Exploration of Glaucoma
title_full A Data Mining Metabolomics Exploration of Glaucoma
title_fullStr A Data Mining Metabolomics Exploration of Glaucoma
title_full_unstemmed A Data Mining Metabolomics Exploration of Glaucoma
title_short A Data Mining Metabolomics Exploration of Glaucoma
title_sort data mining metabolomics exploration of glaucoma
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074047/
https://www.ncbi.nlm.nih.gov/pubmed/32012845
http://dx.doi.org/10.3390/metabo10020049
work_keys_str_mv AT kouassinzoughetjudith adataminingmetabolomicsexplorationofglaucoma
AT guehlouzkhadidja adataminingmetabolomicsexplorationofglaucoma
AT leruezstephanie adataminingmetabolomicsexplorationofglaucoma
AT gohierphilippe adataminingmetabolomicsexplorationofglaucoma
AT boccacinzia adataminingmetabolomicsexplorationofglaucoma
AT mullerjeanne adataminingmetabolomicsexplorationofglaucoma
AT blanchetodile adataminingmetabolomicsexplorationofglaucoma
AT bonneaudominique adataminingmetabolomicsexplorationofglaucoma
AT simardgilles adataminingmetabolomicsexplorationofglaucoma
AT mileadan adataminingmetabolomicsexplorationofglaucoma
AT procacciovincent adataminingmetabolomicsexplorationofglaucoma
AT lenaersguy adataminingmetabolomicsexplorationofglaucoma
AT chaodelabarcajuanm adataminingmetabolomicsexplorationofglaucoma
AT reynierpascal adataminingmetabolomicsexplorationofglaucoma
AT kouassinzoughetjudith dataminingmetabolomicsexplorationofglaucoma
AT guehlouzkhadidja dataminingmetabolomicsexplorationofglaucoma
AT leruezstephanie dataminingmetabolomicsexplorationofglaucoma
AT gohierphilippe dataminingmetabolomicsexplorationofglaucoma
AT boccacinzia dataminingmetabolomicsexplorationofglaucoma
AT mullerjeanne dataminingmetabolomicsexplorationofglaucoma
AT blanchetodile dataminingmetabolomicsexplorationofglaucoma
AT bonneaudominique dataminingmetabolomicsexplorationofglaucoma
AT simardgilles dataminingmetabolomicsexplorationofglaucoma
AT mileadan dataminingmetabolomicsexplorationofglaucoma
AT procacciovincent dataminingmetabolomicsexplorationofglaucoma
AT lenaersguy dataminingmetabolomicsexplorationofglaucoma
AT chaodelabarcajuanm dataminingmetabolomicsexplorationofglaucoma
AT reynierpascal dataminingmetabolomicsexplorationofglaucoma