Cargando…
Model-Based Clustering with Measurement or Estimation Errors
Model-based clustering with finite mixture models has become a widely used clustering method. One of the recent implementations is MCLUST. When objects to be clustered are summary statistics, such as regression coefficient estimates, they are naturally associated with estimation errors, whose covari...
Autores principales: | Zhang, Wanli, Di, Yanming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074130/ https://www.ncbi.nlm.nih.gov/pubmed/32050700 http://dx.doi.org/10.3390/genes11020185 |
Ejemplares similares
-
Modelling and estimation of measurement errors
por: Neuilly, Michèle
Publicado: (1999) -
Radiation risk estimation: based on measurement error models
por: Masiuk, Sergii, et al.
Publicado: (2017) -
Sparse Density Estimation with Measurement Errors
por: Yang, Xiaowei, et al.
Publicado: (2021) -
Systematic Error Modeling and Bias Estimation
por: Zhang, Feihu, et al.
Publicado: (2016) -
Corruption of the Pearson correlation coefficient by measurement error and its estimation, bias, and correction under different error models
por: Saccenti, Edoardo, et al.
Publicado: (2020)