Cargando…
Texture analysis of early cerebral tissue damage in magnetic resonance imaging of patients with lung cancer
Primary tumors can secrete many cytokines, inducing tissue damage or microstructural changes in distant organs. The purpose of this study was to investigate changes in texture features in the cerebral tissue of patients with lung cancer without brain metastasis. In this study, 50 patients with lung...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074325/ https://www.ncbi.nlm.nih.gov/pubmed/32256809 http://dx.doi.org/10.3892/ol.2020.11426 |
Sumario: | Primary tumors can secrete many cytokines, inducing tissue damage or microstructural changes in distant organs. The purpose of this study was to investigate changes in texture features in the cerebral tissue of patients with lung cancer without brain metastasis. In this study, 50 patients with lung cancers underwent 3.0-T magnetic resonance imaging (MRI) within 2 weeks of being diagnosed with lung cancer. Texture analysis (TA) was carried out in 8 gray matter areas, including bilateral frontal cortices, parietal cortices, occipital cortices and temporal cortices, as well as 2 areas of bilateral frontoparietal white matter. The same procedure was performed for 57 healthy controls. A total of 32 texture parameters were separately compared between the patients and controls in the different cerebral tissue sites. Texture features among patients based on histological type and clinical stage were also compared. Of the 32 texture parameters, 27 showed significant differences between patients with lung cancer and healthy controls. There were significant differences in cerebral tissue, both gray matter and white matter between patients and controls, especially in several wavelet-based parameters. However, there were no significant differences between tissue at homologous sites in bilateral hemispheres, either in patients or controls. TA detected overt changes in the texture features of cerebral tissue in patients with lung cancer without brain metastasis compared with those of healthy controls. TA may be considered as a novel and adjunctive approach to conventional brain MRI to reveal cerebral tissue changes invisible on MRI alone in patients with lung cancer. |
---|