Cargando…
A Computer Vision System Based on Majority-Voting Ensemble Neural Network for the Automatic Classification of Three Chickpea Varieties
Since different varieties of crops have specific applications, it is therefore important to properly identify each cultivar, in order to avoid fake varieties being sold as genuine, i.e., fraud. Despite that properly trained human experts might accurately identify and classify crop varieties, compute...
Autores principales: | Pourdarbani, Razieh, Sabzi, Sajad, Kalantari, Davood, Hernández-Hernández, José Luis, Arribas, Juan Ignacio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074521/ https://www.ncbi.nlm.nih.gov/pubmed/31972986 http://dx.doi.org/10.3390/foods9020113 |
Ejemplares similares
-
Classification of Cucumber Leaves Based on Nitrogen Content Using the Hyperspectral Imaging Technique and Majority Voting
por: Sabzi, Sajad, et al.
Publicado: (2021) -
Identification of Internal Defects in Potato Using Spectroscopy and Computational Intelligence Based on Majority Voting Techniques
por: Imanian, Kamal, et al.
Publicado: (2021) -
Nondestructive estimation of three apple fruit properties at various ripening levels with optimal Vis-NIR spectral wavelength regression data
por: Pourdarbani, Razieh, et al.
Publicado: (2021) -
An automatic visible-range video weed detection, segmentation and classification prototype in potato field
por: Sabzi, Sajad, et al.
Publicado: (2020) -
Weed Classification for Site-Specific Weed Management Using an Automated Stereo Computer-Vision Machine-Learning System in Rice Fields
por: Dadashzadeh, Mojtaba, et al.
Publicado: (2020)