Cargando…
The Tool Life and Coating-Substrate Adhesion of AlCrSiN-Coated Carbide Cutting Tools Prepared by LARC with Respect to the Edge Preparation and Surface Finishing
Nanocomposite AlCrSiN hard coatings were deposited on the cemented carbide substrates with a negative substrate bias voltage within the range of −80 to −120 V using the cathodic arc evaporation system. The effect of variation in the bias voltage on the coating-substrate adhesion and nanohardness was...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074613/ https://www.ncbi.nlm.nih.gov/pubmed/32033411 http://dx.doi.org/10.3390/mi11020166 |
_version_ | 1783506874105069568 |
---|---|
author | Vopát, Tomáš Sahul, Martin Haršáni, Marián Vortel, Ondřej Zlámal, Tomáš |
author_facet | Vopát, Tomáš Sahul, Martin Haršáni, Marián Vortel, Ondřej Zlámal, Tomáš |
author_sort | Vopát, Tomáš |
collection | PubMed |
description | Nanocomposite AlCrSiN hard coatings were deposited on the cemented carbide substrates with a negative substrate bias voltage within the range of −80 to −120 V using the cathodic arc evaporation system. The effect of variation in the bias voltage on the coating-substrate adhesion and nanohardness was investigated. It was clear that if bias voltage increased, nanohardness increased in the range from −80 V to −120 V. The coating deposited at the bias voltage of −120 V had the highest nanohardness (37.7 ± 1.5 GPa). The samples were prepared by brushing and wet microblasting to finish a surface and prepare the required cutting edge radii for the tool life cutting tests and the coating adhesion observation. The indents after the static Mercedes indentation test were studied by scanning the electron microscope to evaluate the coating-substrate adhesion. The longer time of edge preparation with surface finishing led to a slight deterioration in the adhesion strength of the coating to the substrate. The tool wear of cemented carbide turning inserts was studied on the turning centre during the tool life cutting test. The tested workpiece material was austenitic stainless steel. The cemented carbide turning inserts with larger cutting edge radius were worn out faster during the machining. Meanwhile, the tool life increased when the cutting edge radius was smaller. |
format | Online Article Text |
id | pubmed-7074613 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70746132020-03-20 The Tool Life and Coating-Substrate Adhesion of AlCrSiN-Coated Carbide Cutting Tools Prepared by LARC with Respect to the Edge Preparation and Surface Finishing Vopát, Tomáš Sahul, Martin Haršáni, Marián Vortel, Ondřej Zlámal, Tomáš Micromachines (Basel) Article Nanocomposite AlCrSiN hard coatings were deposited on the cemented carbide substrates with a negative substrate bias voltage within the range of −80 to −120 V using the cathodic arc evaporation system. The effect of variation in the bias voltage on the coating-substrate adhesion and nanohardness was investigated. It was clear that if bias voltage increased, nanohardness increased in the range from −80 V to −120 V. The coating deposited at the bias voltage of −120 V had the highest nanohardness (37.7 ± 1.5 GPa). The samples were prepared by brushing and wet microblasting to finish a surface and prepare the required cutting edge radii for the tool life cutting tests and the coating adhesion observation. The indents after the static Mercedes indentation test were studied by scanning the electron microscope to evaluate the coating-substrate adhesion. The longer time of edge preparation with surface finishing led to a slight deterioration in the adhesion strength of the coating to the substrate. The tool wear of cemented carbide turning inserts was studied on the turning centre during the tool life cutting test. The tested workpiece material was austenitic stainless steel. The cemented carbide turning inserts with larger cutting edge radius were worn out faster during the machining. Meanwhile, the tool life increased when the cutting edge radius was smaller. MDPI 2020-02-05 /pmc/articles/PMC7074613/ /pubmed/32033411 http://dx.doi.org/10.3390/mi11020166 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Vopát, Tomáš Sahul, Martin Haršáni, Marián Vortel, Ondřej Zlámal, Tomáš The Tool Life and Coating-Substrate Adhesion of AlCrSiN-Coated Carbide Cutting Tools Prepared by LARC with Respect to the Edge Preparation and Surface Finishing |
title | The Tool Life and Coating-Substrate Adhesion of AlCrSiN-Coated Carbide Cutting Tools Prepared by LARC with Respect to the Edge Preparation and Surface Finishing |
title_full | The Tool Life and Coating-Substrate Adhesion of AlCrSiN-Coated Carbide Cutting Tools Prepared by LARC with Respect to the Edge Preparation and Surface Finishing |
title_fullStr | The Tool Life and Coating-Substrate Adhesion of AlCrSiN-Coated Carbide Cutting Tools Prepared by LARC with Respect to the Edge Preparation and Surface Finishing |
title_full_unstemmed | The Tool Life and Coating-Substrate Adhesion of AlCrSiN-Coated Carbide Cutting Tools Prepared by LARC with Respect to the Edge Preparation and Surface Finishing |
title_short | The Tool Life and Coating-Substrate Adhesion of AlCrSiN-Coated Carbide Cutting Tools Prepared by LARC with Respect to the Edge Preparation and Surface Finishing |
title_sort | tool life and coating-substrate adhesion of alcrsin-coated carbide cutting tools prepared by larc with respect to the edge preparation and surface finishing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074613/ https://www.ncbi.nlm.nih.gov/pubmed/32033411 http://dx.doi.org/10.3390/mi11020166 |
work_keys_str_mv | AT vopattomas thetoollifeandcoatingsubstrateadhesionofalcrsincoatedcarbidecuttingtoolspreparedbylarcwithrespecttotheedgepreparationandsurfacefinishing AT sahulmartin thetoollifeandcoatingsubstrateadhesionofalcrsincoatedcarbidecuttingtoolspreparedbylarcwithrespecttotheedgepreparationandsurfacefinishing AT harsanimarian thetoollifeandcoatingsubstrateadhesionofalcrsincoatedcarbidecuttingtoolspreparedbylarcwithrespecttotheedgepreparationandsurfacefinishing AT vortelondrej thetoollifeandcoatingsubstrateadhesionofalcrsincoatedcarbidecuttingtoolspreparedbylarcwithrespecttotheedgepreparationandsurfacefinishing AT zlamaltomas thetoollifeandcoatingsubstrateadhesionofalcrsincoatedcarbidecuttingtoolspreparedbylarcwithrespecttotheedgepreparationandsurfacefinishing AT vopattomas toollifeandcoatingsubstrateadhesionofalcrsincoatedcarbidecuttingtoolspreparedbylarcwithrespecttotheedgepreparationandsurfacefinishing AT sahulmartin toollifeandcoatingsubstrateadhesionofalcrsincoatedcarbidecuttingtoolspreparedbylarcwithrespecttotheedgepreparationandsurfacefinishing AT harsanimarian toollifeandcoatingsubstrateadhesionofalcrsincoatedcarbidecuttingtoolspreparedbylarcwithrespecttotheedgepreparationandsurfacefinishing AT vortelondrej toollifeandcoatingsubstrateadhesionofalcrsincoatedcarbidecuttingtoolspreparedbylarcwithrespecttotheedgepreparationandsurfacefinishing AT zlamaltomas toollifeandcoatingsubstrateadhesionofalcrsincoatedcarbidecuttingtoolspreparedbylarcwithrespecttotheedgepreparationandsurfacefinishing |