Cargando…

Nanosensors-Assisted Quantitative Analysis of Biochemical Processes in Droplets

Here, we present a miniaturized lab-on-a-chip detecting system for an all-electric and label-free analysis of the emulsion droplets incorporating the nanoscopic silicon nanowires-based field-effect transistors (FETs). We specifically focus on the analysis of β-galactosidase e.g., activity, which is...

Descripción completa

Detalles Bibliográficos
Autores principales: Belyaev, Dmitry, Schütt, Julian, Ibarlucea, Bergoi, Rim, Taiuk, Baraban, Larysa, Cuniberti, Gianaurelio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074628/
https://www.ncbi.nlm.nih.gov/pubmed/31991863
http://dx.doi.org/10.3390/mi11020138
Descripción
Sumario:Here, we present a miniaturized lab-on-a-chip detecting system for an all-electric and label-free analysis of the emulsion droplets incorporating the nanoscopic silicon nanowires-based field-effect transistors (FETs). We specifically focus on the analysis of β-galactosidase e.g., activity, which is an important enzyme of the glycolysis metabolic pathway. Furthermore, the efficiency of the synthesis and action of β-galactosidase can be one of the markers for several diseases, e.g., cancer, hyper/hypoglycemia, cell senescence, or other disruptions in cell functioning. We measure the reaction and reaction kinetics-associated shift of the source-to-drain current I(sd) in the system, which is caused by the change of the ionic strength of the microenvironment. With these results, we demonstrate that the ion-sensitive FETs are able to sense the interior of the aqueous reactors; thus, the conjunction of miniature nanosensors and droplet-based microfluidic systems conceptually opens a new route toward a sensitive, optics-less analysis of biochemical processes.