Cargando…
Proportional Microvalve Using a Unimorph Piezoelectric Microactuator
Microvalves are important flow-control devices in many standalone and integrated microfluidic applications. Polydimethylsiloxane (PDMS)-based pneumatic microvalves are commonly used but they generally require large peripheral connections that decrease portability. There are many alternatives found i...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074653/ https://www.ncbi.nlm.nih.gov/pubmed/31991593 http://dx.doi.org/10.3390/mi11020130 |
Sumario: | Microvalves are important flow-control devices in many standalone and integrated microfluidic applications. Polydimethylsiloxane (PDMS)-based pneumatic microvalves are commonly used but they generally require large peripheral connections that decrease portability. There are many alternatives found in the literature that use Si-based microvalves, but variants that can throttle even moderate pressures (1 bar) tend to be bulky (cm-range) or consume high power. This paper details the development of a low-power, normally-open piezoelectric microvalve to control flows with a maximum driving pressure of 1 bar, but also retain a small effective form-factor of 5 mm × 5 mm × 1.8 mm. A novel combination of rapid prototyping methods like stereolithography and laser-cutting have been used to realize this device. The maximum displacement of the fabricated piezoelectric microactuator was measured to be 8.5 μm at 150 V. The fabricated microvalve has a flow range of 0–90 μL min(−1) at 1 bar inlet pressure. When fully closed, a leakage of 0.8% open-flow was observed with a power-consumption of 37.5 μW. A flow resolution of 0.2 μL min(−1)—De-ionized (DI) water was measured at 0.5 bar pressure. |
---|