Cargando…
Second-Harmonic Generation in Suspended AlGaAs Waveguides: A Comparative Study
Due to adjustable modal birefringence, suspended AlGaAs optical waveguides with submicron transverse sections can support phase-matched frequency mixing in the whole material transparency range, even close to the material bandgap, by tuning the width-to-height ratio. Furthermore, their single-pass c...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074691/ https://www.ncbi.nlm.nih.gov/pubmed/32102241 http://dx.doi.org/10.3390/mi11020229 |
Sumario: | Due to adjustable modal birefringence, suspended AlGaAs optical waveguides with submicron transverse sections can support phase-matched frequency mixing in the whole material transparency range, even close to the material bandgap, by tuning the width-to-height ratio. Furthermore, their single-pass conversion efficiency is potentially huge, thanks to the extreme confinement of the interacting modes in the highly nonlinear and high-refractive-index core, with scattering losses lower than in selectively oxidized or quasi-phase-matched AlGaAs waveguides. Here we compare the performances of two types of suspended waveguides made of this material, designed for second-harmonic generation (SHG) in the telecom range: (a) a nanowire suspended in air by lateral tethers and (b) an ultrathin nanorib, made of a strip lying on a suspended membrane of the same material. Both devices have been fabricated from a 123 nm thick AlGaAs epitaxial layer and tested in terms of SHG efficiency, injection and propagation losses. Our results point out that the nanorib waveguide, which benefits from a far better mechanical robustness, performs comparably to the fully suspended nanowire and is well-suited for liquid sensing applications. |
---|