Cargando…
Genomic and Metabolic Insights into Denitrification, Sulfur Oxidation, and Multidrug Efflux Pump Mechanisms in the Bacterium Rhodoferax sediminis sp. nov.
This genus contains both phototrophs and nonphototrophic members. Here, we present a high-quality complete genome of the strain CHu59-6-5(T), isolated from a freshwater sediment. The circular chromosome (4.39 Mbp) of the strain CHu59-6-5(T) has 64.4% G+C content and contains 4240 genes, of which a t...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074706/ https://www.ncbi.nlm.nih.gov/pubmed/32075304 http://dx.doi.org/10.3390/microorganisms8020262 |
_version_ | 1783506894889943040 |
---|---|
author | Jin, Chun-Zhi Zhuo, Ye Wu, Xuewen Ko, So-Ra Li, Taihua Jin, Feng-Jie Ahn, Chi-Yong Oh, Hee-Mock Lee, Hyung-Gwan Jin, Long |
author_facet | Jin, Chun-Zhi Zhuo, Ye Wu, Xuewen Ko, So-Ra Li, Taihua Jin, Feng-Jie Ahn, Chi-Yong Oh, Hee-Mock Lee, Hyung-Gwan Jin, Long |
author_sort | Jin, Chun-Zhi |
collection | PubMed |
description | This genus contains both phototrophs and nonphototrophic members. Here, we present a high-quality complete genome of the strain CHu59-6-5(T), isolated from a freshwater sediment. The circular chromosome (4.39 Mbp) of the strain CHu59-6-5(T) has 64.4% G+C content and contains 4240 genes, of which a total of 3918 genes (92.4%) were functionally assigned to the COG (clusters of orthologous groups) database. Functional genes for denitrification (narGHJI, nirK and qnor) were identified on the genomes of the strain CHu59-6-5(T), except for N(2)O reductase (nos) genes for the final step of denitrification. Genes (soxBXAZY) for encoding sulfur oxidation proteins were identified, and the FSD and soxF genes encoding the monomeric flavoproteins which have sulfide dehydrogenase activities were also detected. Lastly, genes for the assembly of two different RND (resistance-nodulation division) type efflux systems and one ABC (ATP-binding cassette) type efflux system were identified in the Rhodoferax sediminis CHu59-6-5(T). Phylogenetic analysis based on 16S rRNA sequences and Average Nucleotide Identities (ANI) support the idea that the strain CHu59-6-5(T) has a close relationship to the genus Rhodoferax. A polyphasic study was done to establish the taxonomic status of the strain CHu59-6-5(T). Based on these data, we proposed that the isolate be classified to the genus Rhodoferax as Rhodoferax sediminis sp. nov. with isolate CHu59-6-5(T). |
format | Online Article Text |
id | pubmed-7074706 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70747062020-03-20 Genomic and Metabolic Insights into Denitrification, Sulfur Oxidation, and Multidrug Efflux Pump Mechanisms in the Bacterium Rhodoferax sediminis sp. nov. Jin, Chun-Zhi Zhuo, Ye Wu, Xuewen Ko, So-Ra Li, Taihua Jin, Feng-Jie Ahn, Chi-Yong Oh, Hee-Mock Lee, Hyung-Gwan Jin, Long Microorganisms Article This genus contains both phototrophs and nonphototrophic members. Here, we present a high-quality complete genome of the strain CHu59-6-5(T), isolated from a freshwater sediment. The circular chromosome (4.39 Mbp) of the strain CHu59-6-5(T) has 64.4% G+C content and contains 4240 genes, of which a total of 3918 genes (92.4%) were functionally assigned to the COG (clusters of orthologous groups) database. Functional genes for denitrification (narGHJI, nirK and qnor) were identified on the genomes of the strain CHu59-6-5(T), except for N(2)O reductase (nos) genes for the final step of denitrification. Genes (soxBXAZY) for encoding sulfur oxidation proteins were identified, and the FSD and soxF genes encoding the monomeric flavoproteins which have sulfide dehydrogenase activities were also detected. Lastly, genes for the assembly of two different RND (resistance-nodulation division) type efflux systems and one ABC (ATP-binding cassette) type efflux system were identified in the Rhodoferax sediminis CHu59-6-5(T). Phylogenetic analysis based on 16S rRNA sequences and Average Nucleotide Identities (ANI) support the idea that the strain CHu59-6-5(T) has a close relationship to the genus Rhodoferax. A polyphasic study was done to establish the taxonomic status of the strain CHu59-6-5(T). Based on these data, we proposed that the isolate be classified to the genus Rhodoferax as Rhodoferax sediminis sp. nov. with isolate CHu59-6-5(T). MDPI 2020-02-15 /pmc/articles/PMC7074706/ /pubmed/32075304 http://dx.doi.org/10.3390/microorganisms8020262 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jin, Chun-Zhi Zhuo, Ye Wu, Xuewen Ko, So-Ra Li, Taihua Jin, Feng-Jie Ahn, Chi-Yong Oh, Hee-Mock Lee, Hyung-Gwan Jin, Long Genomic and Metabolic Insights into Denitrification, Sulfur Oxidation, and Multidrug Efflux Pump Mechanisms in the Bacterium Rhodoferax sediminis sp. nov. |
title | Genomic and Metabolic Insights into Denitrification, Sulfur Oxidation, and Multidrug Efflux Pump Mechanisms in the Bacterium Rhodoferax sediminis sp. nov. |
title_full | Genomic and Metabolic Insights into Denitrification, Sulfur Oxidation, and Multidrug Efflux Pump Mechanisms in the Bacterium Rhodoferax sediminis sp. nov. |
title_fullStr | Genomic and Metabolic Insights into Denitrification, Sulfur Oxidation, and Multidrug Efflux Pump Mechanisms in the Bacterium Rhodoferax sediminis sp. nov. |
title_full_unstemmed | Genomic and Metabolic Insights into Denitrification, Sulfur Oxidation, and Multidrug Efflux Pump Mechanisms in the Bacterium Rhodoferax sediminis sp. nov. |
title_short | Genomic and Metabolic Insights into Denitrification, Sulfur Oxidation, and Multidrug Efflux Pump Mechanisms in the Bacterium Rhodoferax sediminis sp. nov. |
title_sort | genomic and metabolic insights into denitrification, sulfur oxidation, and multidrug efflux pump mechanisms in the bacterium rhodoferax sediminis sp. nov. |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074706/ https://www.ncbi.nlm.nih.gov/pubmed/32075304 http://dx.doi.org/10.3390/microorganisms8020262 |
work_keys_str_mv | AT jinchunzhi genomicandmetabolicinsightsintodenitrificationsulfuroxidationandmultidrugeffluxpumpmechanismsinthebacteriumrhodoferaxsediminisspnov AT zhuoye genomicandmetabolicinsightsintodenitrificationsulfuroxidationandmultidrugeffluxpumpmechanismsinthebacteriumrhodoferaxsediminisspnov AT wuxuewen genomicandmetabolicinsightsintodenitrificationsulfuroxidationandmultidrugeffluxpumpmechanismsinthebacteriumrhodoferaxsediminisspnov AT kosora genomicandmetabolicinsightsintodenitrificationsulfuroxidationandmultidrugeffluxpumpmechanismsinthebacteriumrhodoferaxsediminisspnov AT litaihua genomicandmetabolicinsightsintodenitrificationsulfuroxidationandmultidrugeffluxpumpmechanismsinthebacteriumrhodoferaxsediminisspnov AT jinfengjie genomicandmetabolicinsightsintodenitrificationsulfuroxidationandmultidrugeffluxpumpmechanismsinthebacteriumrhodoferaxsediminisspnov AT ahnchiyong genomicandmetabolicinsightsintodenitrificationsulfuroxidationandmultidrugeffluxpumpmechanismsinthebacteriumrhodoferaxsediminisspnov AT ohheemock genomicandmetabolicinsightsintodenitrificationsulfuroxidationandmultidrugeffluxpumpmechanismsinthebacteriumrhodoferaxsediminisspnov AT leehyunggwan genomicandmetabolicinsightsintodenitrificationsulfuroxidationandmultidrugeffluxpumpmechanismsinthebacteriumrhodoferaxsediminisspnov AT jinlong genomicandmetabolicinsightsintodenitrificationsulfuroxidationandmultidrugeffluxpumpmechanismsinthebacteriumrhodoferaxsediminisspnov |