Cargando…
Oligosaccharides from Palm Kernel Cake Enhances Adherence Inhibition and Intracellular Clearance of Salmonella enterica Serovar Enteritidis In Vitro
Salmonella enterica serovar (ser.) Enteritidis (S. Enteritidis) is a foodborne pathogen often associated with contaminated poultry products. This study evaluated the anti-adherence and intracellular clearance capability of oligosaccharides extracted from palm kernel cake (PKC), a by-product of the p...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074813/ https://www.ncbi.nlm.nih.gov/pubmed/32075189 http://dx.doi.org/10.3390/microorganisms8020255 |
_version_ | 1783506920011726848 |
---|---|
author | Foo, Rui Qing Jahromi, Mohammad Faseleh Chen, Wei Li Ahmad, Syahida Lai, Kok Song Idrus, Zulkifli Liang, Juan Boo |
author_facet | Foo, Rui Qing Jahromi, Mohammad Faseleh Chen, Wei Li Ahmad, Syahida Lai, Kok Song Idrus, Zulkifli Liang, Juan Boo |
author_sort | Foo, Rui Qing |
collection | PubMed |
description | Salmonella enterica serovar (ser.) Enteritidis (S. Enteritidis) is a foodborne pathogen often associated with contaminated poultry products. This study evaluated the anti-adherence and intracellular clearance capability of oligosaccharides extracted from palm kernel cake (PKC), a by-product of the palm oil industry, and compared its efficacy with commercial prebiotics— fructooligosaccharide (FOS) and mannanoligosaccharide (MOS)—against S. Enteritidis in vitro. Based on the degree of polymerization (DP), PKC oligosaccharides were further divided into ‘Small’ (DP ≤ 6) and ‘Big’ (DP > 6) fractions. Results showed that the Small and Big PKC fractions were able to reduce (p < 0.05) S. Enteritidis adherence to Cancer coli-2 (Caco-2) cells at 0.1 mg/ mL while MOS and FOS showed significant reduction at 1.0 mg/mL and 10.0 mg/mL, respectively. In terms of S. Enteritidis clearance, oligosaccharide-treated macrophages showed better S. Enteritidis clearance over time at 50 µg/mL for Small, Big and MOS, while FOS required a concentration of 500 µg/mL for a similar effect. This data highlights that oligosaccharides from PKC, particularly those of lower DP, were more effective than MOS and FOS at reducing S. Enteritidis adherence and enhancing S. Enteritidis clearance in a cell culture model. |
format | Online Article Text |
id | pubmed-7074813 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70748132020-03-20 Oligosaccharides from Palm Kernel Cake Enhances Adherence Inhibition and Intracellular Clearance of Salmonella enterica Serovar Enteritidis In Vitro Foo, Rui Qing Jahromi, Mohammad Faseleh Chen, Wei Li Ahmad, Syahida Lai, Kok Song Idrus, Zulkifli Liang, Juan Boo Microorganisms Article Salmonella enterica serovar (ser.) Enteritidis (S. Enteritidis) is a foodborne pathogen often associated with contaminated poultry products. This study evaluated the anti-adherence and intracellular clearance capability of oligosaccharides extracted from palm kernel cake (PKC), a by-product of the palm oil industry, and compared its efficacy with commercial prebiotics— fructooligosaccharide (FOS) and mannanoligosaccharide (MOS)—against S. Enteritidis in vitro. Based on the degree of polymerization (DP), PKC oligosaccharides were further divided into ‘Small’ (DP ≤ 6) and ‘Big’ (DP > 6) fractions. Results showed that the Small and Big PKC fractions were able to reduce (p < 0.05) S. Enteritidis adherence to Cancer coli-2 (Caco-2) cells at 0.1 mg/ mL while MOS and FOS showed significant reduction at 1.0 mg/mL and 10.0 mg/mL, respectively. In terms of S. Enteritidis clearance, oligosaccharide-treated macrophages showed better S. Enteritidis clearance over time at 50 µg/mL for Small, Big and MOS, while FOS required a concentration of 500 µg/mL for a similar effect. This data highlights that oligosaccharides from PKC, particularly those of lower DP, were more effective than MOS and FOS at reducing S. Enteritidis adherence and enhancing S. Enteritidis clearance in a cell culture model. MDPI 2020-02-14 /pmc/articles/PMC7074813/ /pubmed/32075189 http://dx.doi.org/10.3390/microorganisms8020255 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Foo, Rui Qing Jahromi, Mohammad Faseleh Chen, Wei Li Ahmad, Syahida Lai, Kok Song Idrus, Zulkifli Liang, Juan Boo Oligosaccharides from Palm Kernel Cake Enhances Adherence Inhibition and Intracellular Clearance of Salmonella enterica Serovar Enteritidis In Vitro |
title | Oligosaccharides from Palm Kernel Cake Enhances Adherence Inhibition and Intracellular Clearance of Salmonella enterica Serovar Enteritidis In Vitro |
title_full | Oligosaccharides from Palm Kernel Cake Enhances Adherence Inhibition and Intracellular Clearance of Salmonella enterica Serovar Enteritidis In Vitro |
title_fullStr | Oligosaccharides from Palm Kernel Cake Enhances Adherence Inhibition and Intracellular Clearance of Salmonella enterica Serovar Enteritidis In Vitro |
title_full_unstemmed | Oligosaccharides from Palm Kernel Cake Enhances Adherence Inhibition and Intracellular Clearance of Salmonella enterica Serovar Enteritidis In Vitro |
title_short | Oligosaccharides from Palm Kernel Cake Enhances Adherence Inhibition and Intracellular Clearance of Salmonella enterica Serovar Enteritidis In Vitro |
title_sort | oligosaccharides from palm kernel cake enhances adherence inhibition and intracellular clearance of salmonella enterica serovar enteritidis in vitro |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074813/ https://www.ncbi.nlm.nih.gov/pubmed/32075189 http://dx.doi.org/10.3390/microorganisms8020255 |
work_keys_str_mv | AT fooruiqing oligosaccharidesfrompalmkernelcakeenhancesadherenceinhibitionandintracellularclearanceofsalmonellaentericaserovarenteritidisinvitro AT jahromimohammadfaseleh oligosaccharidesfrompalmkernelcakeenhancesadherenceinhibitionandintracellularclearanceofsalmonellaentericaserovarenteritidisinvitro AT chenweili oligosaccharidesfrompalmkernelcakeenhancesadherenceinhibitionandintracellularclearanceofsalmonellaentericaserovarenteritidisinvitro AT ahmadsyahida oligosaccharidesfrompalmkernelcakeenhancesadherenceinhibitionandintracellularclearanceofsalmonellaentericaserovarenteritidisinvitro AT laikoksong oligosaccharidesfrompalmkernelcakeenhancesadherenceinhibitionandintracellularclearanceofsalmonellaentericaserovarenteritidisinvitro AT idruszulkifli oligosaccharidesfrompalmkernelcakeenhancesadherenceinhibitionandintracellularclearanceofsalmonellaentericaserovarenteritidisinvitro AT liangjuanboo oligosaccharidesfrompalmkernelcakeenhancesadherenceinhibitionandintracellularclearanceofsalmonellaentericaserovarenteritidisinvitro |