Cargando…
UPF1 Participates in the Progression of Endometrial Cancer by Inhibiting the Expression of lncRNA PVT1
BACKGROUND: Endometrial carcinoma (EC) is the primary cause of death associated with cancer globally. Thus, the possible molecular mechanism of EC needs further exploration. Up-frameshift protein 1 (UPF1) is an ATPase depending on RNA/DNA and RNA helicase depending on ATP. Long noncoding RNA (lncRNA...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074825/ https://www.ncbi.nlm.nih.gov/pubmed/32210576 http://dx.doi.org/10.2147/OTT.S233149 |
Sumario: | BACKGROUND: Endometrial carcinoma (EC) is the primary cause of death associated with cancer globally. Thus, the possible molecular mechanism of EC needs further exploration. Up-frameshift protein 1 (UPF1) is an ATPase depending on RNA/DNA and RNA helicase depending on ATP. Long noncoding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) was dysregulated in diverse diseases. METHODS: qRT-PCR and Western blot were applied to detect UPF1 and PVT1 in EC. CCK-8, colony formation, and Transwell assays were used to test the effects of UPF1/PVT1 on cell proliferation and migration. Cells were cultured with actinomycin D to observe mRNA stability, and RNA immunoprecipitation assay was applied to verified the relationship between UPF1 and PVT1. Glucose consumption and lactate generation were measured when cells were transfected with siRNA. RESULTS: Results demonstrated that the expression of UPF1 exhibited a remarkable decrement in EC tissues relative to that in non-tumor tissues. Subsequent functional experiments suggested that UPF1 decrement stimulated EC cells to grow and migrate. Moreover, UPF1 was discovered to be linked to PVT1 and had an inverse correlation with PVT1. Besides, PVT1 expression affected EC growth and migration, and PVT1 decrement alleviated the influence of UPF1 decrement on EC growth and migration and strengthened glycolysis in EC. CONCLUSION: In this study, we found that UPF1 was down-regulated in EC tissues, and UPF1 might exert its role by regulating the expression of PVT1. |
---|