Cargando…
DTD: An R Package for Digital Tissue Deconvolution
Digital tissue deconvolution (DTD) estimates the cellular composition of a tissue from its bulk gene-expression profile. For this, DTD approximates the bulk as a mixture of cell-specific expression profiles. Different tissues have different cellular compositions, with cells in different activation s...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mary Ann Liebert, Inc., publishers
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074920/ https://www.ncbi.nlm.nih.gov/pubmed/31995409 http://dx.doi.org/10.1089/cmb.2019.0469 |
Sumario: | Digital tissue deconvolution (DTD) estimates the cellular composition of a tissue from its bulk gene-expression profile. For this, DTD approximates the bulk as a mixture of cell-specific expression profiles. Different tissues have different cellular compositions, with cells in different activation states, and embedded in different environments. Consequently, DTD can profit from tailoring the deconvolution model to a specific tissue context. Loss-function learning adapts DTD to a specific tissue context, such as the deconvolution of blood, or a specific type of tumor tissue. We provide software for loss-function learning, for its validation and visualization, and for applying the DTD models to new data. |
---|