Cargando…

DTD: An R Package for Digital Tissue Deconvolution

Digital tissue deconvolution (DTD) estimates the cellular composition of a tissue from its bulk gene-expression profile. For this, DTD approximates the bulk as a mixture of cell-specific expression profiles. Different tissues have different cellular compositions, with cells in different activation s...

Descripción completa

Detalles Bibliográficos
Autores principales: Schön, Marian, Simeth, Jakob, Heinrich, Paul, Görtler, Franziska, Solbrig, Stefan, Wettig, Tilo, Oefner, Peter J., Altenbuchinger, Michael, Spang, Rainer
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Mary Ann Liebert, Inc., publishers 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074920/
https://www.ncbi.nlm.nih.gov/pubmed/31995409
http://dx.doi.org/10.1089/cmb.2019.0469
_version_ 1783506940800794624
author Schön, Marian
Simeth, Jakob
Heinrich, Paul
Görtler, Franziska
Solbrig, Stefan
Wettig, Tilo
Oefner, Peter J.
Altenbuchinger, Michael
Spang, Rainer
author_facet Schön, Marian
Simeth, Jakob
Heinrich, Paul
Görtler, Franziska
Solbrig, Stefan
Wettig, Tilo
Oefner, Peter J.
Altenbuchinger, Michael
Spang, Rainer
author_sort Schön, Marian
collection PubMed
description Digital tissue deconvolution (DTD) estimates the cellular composition of a tissue from its bulk gene-expression profile. For this, DTD approximates the bulk as a mixture of cell-specific expression profiles. Different tissues have different cellular compositions, with cells in different activation states, and embedded in different environments. Consequently, DTD can profit from tailoring the deconvolution model to a specific tissue context. Loss-function learning adapts DTD to a specific tissue context, such as the deconvolution of blood, or a specific type of tumor tissue. We provide software for loss-function learning, for its validation and visualization, and for applying the DTD models to new data.
format Online
Article
Text
id pubmed-7074920
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Mary Ann Liebert, Inc., publishers
record_format MEDLINE/PubMed
spelling pubmed-70749202020-03-16 DTD: An R Package for Digital Tissue Deconvolution Schön, Marian Simeth, Jakob Heinrich, Paul Görtler, Franziska Solbrig, Stefan Wettig, Tilo Oefner, Peter J. Altenbuchinger, Michael Spang, Rainer J Comput Biol Research Articles Digital tissue deconvolution (DTD) estimates the cellular composition of a tissue from its bulk gene-expression profile. For this, DTD approximates the bulk as a mixture of cell-specific expression profiles. Different tissues have different cellular compositions, with cells in different activation states, and embedded in different environments. Consequently, DTD can profit from tailoring the deconvolution model to a specific tissue context. Loss-function learning adapts DTD to a specific tissue context, such as the deconvolution of blood, or a specific type of tumor tissue. We provide software for loss-function learning, for its validation and visualization, and for applying the DTD models to new data. Mary Ann Liebert, Inc., publishers 2020-03-01 2020-03-11 /pmc/articles/PMC7074920/ /pubmed/31995409 http://dx.doi.org/10.1089/cmb.2019.0469 Text en © Marian Schön, et al., 2020. Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
spellingShingle Research Articles
Schön, Marian
Simeth, Jakob
Heinrich, Paul
Görtler, Franziska
Solbrig, Stefan
Wettig, Tilo
Oefner, Peter J.
Altenbuchinger, Michael
Spang, Rainer
DTD: An R Package for Digital Tissue Deconvolution
title DTD: An R Package for Digital Tissue Deconvolution
title_full DTD: An R Package for Digital Tissue Deconvolution
title_fullStr DTD: An R Package for Digital Tissue Deconvolution
title_full_unstemmed DTD: An R Package for Digital Tissue Deconvolution
title_short DTD: An R Package for Digital Tissue Deconvolution
title_sort dtd: an r package for digital tissue deconvolution
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074920/
https://www.ncbi.nlm.nih.gov/pubmed/31995409
http://dx.doi.org/10.1089/cmb.2019.0469
work_keys_str_mv AT schonmarian dtdanrpackagefordigitaltissuedeconvolution
AT simethjakob dtdanrpackagefordigitaltissuedeconvolution
AT heinrichpaul dtdanrpackagefordigitaltissuedeconvolution
AT gortlerfranziska dtdanrpackagefordigitaltissuedeconvolution
AT solbrigstefan dtdanrpackagefordigitaltissuedeconvolution
AT wettigtilo dtdanrpackagefordigitaltissuedeconvolution
AT oefnerpeterj dtdanrpackagefordigitaltissuedeconvolution
AT altenbuchingermichael dtdanrpackagefordigitaltissuedeconvolution
AT spangrainer dtdanrpackagefordigitaltissuedeconvolution