Cargando…

Baseline white blood cell count-to-apolipoprotein A1 ratio as a novel predictor of long-term adverse outcomes in patients who underwent percutaneous coronary intervention: a retrospective cohort study

BACKGROUND: Previous studies suggested that baseline white blood cell count and apolipoprotein A1 levels were associated with clinical outcomes in patients with coronary heart disease (CAD) who underwent percutaneous coronary intervention (PCI). However, the ratio of baseline white blood cell count-...

Descripción completa

Detalles Bibliográficos
Autores principales: Pan, Ying, Zhang, Jian, Wu, Ting-Ting, Hou, Xian-Geng, Yang, Yi, Ma, Xiang, Ma, Yi-Tong, Zheng, Ying-Ying, XIE, Xiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7075035/
https://www.ncbi.nlm.nih.gov/pubmed/32178685
http://dx.doi.org/10.1186/s12944-020-01206-w
Descripción
Sumario:BACKGROUND: Previous studies suggested that baseline white blood cell count and apolipoprotein A1 levels were associated with clinical outcomes in patients with coronary heart disease (CAD) who underwent percutaneous coronary intervention (PCI). However, the ratio of baseline white blood cell count-to-apolipoprotein A1 level (WAR) and CAD after PCI have not been investigated. The present study investigated the effects of baseline WAR on long-term outcomes after PCI in patients with CAD. METHODS: A total of 6050 patients with CAD who underwent PCI were included in the study. Of these, 372 patients were excluded because no baseline white blood cell counts or apolipoprotein A1 (ApoA1) data was available or because of malignancies or other diseases. Finally, 5678 patients were enrolled in the present study and were divided into 3 groups according to WAR value: lower group - WAR< 5.25 (n = 1889); median group - 5.25 ≤ WAR≤7.15 (n = 1892); and higher group - WAR≥7.15 (n = 1897). The primary endpoint was long-term mortality, including all-cause mortality (ACM) and cardiac mortality (CM), after PCI. The average follow-up time was 35.9 ± 22.6 months. RESULTS: A total of 293 patients developed ACM, including 85 (4.5%) patients in the lower group, 90 (4.8%) patients in the median group, and 118 (6.2%) patients in the higher group. The risk of ACM, cardiac mortality (CM), major adverse cardiovascular and cerebrovascular events (MACCEs), and major adverse cardiovascular events (MACEs) increased 62.6% (hazard risk [HR] =1.626, 95%CI: 1.214–2.179, P = 0.001), 45.5% (HR = 1.455, 95%CI: 1.051–2.014, P = 0.024), 21.2% (HR = 1.212, 95%CI: 1.011–1.454, P = 0.038), and 23.8% (HR = 1.238, 95%CI: 1.025–1.495, P = 0.027), respectively, as determined by multivariate Cox regression analyses comparing the patients in the higher group to patients in the lower group. Patients with a WAR≥4.635 had 92.3, 81.3, 58.1 and 58.2% increased risks of ACM, CM, MACCEs and MACEs, respectively, compared to the patients with WAR< 4.635. Every 1 unit increase in WAR was associated with 3.4, 3.2, 2.0 and 2.2% increased risks of ACM, CM, MACCEs and MACEs, respectively, at the 10-year follow-up. CONCLUSION: The present study indicated that baseline WAR is a novel and an independent predictor of adverse long-term outcomes in CAD patients who underwent PCI.