Cargando…

Surface-Dependent Osteoblasts Response to TiO(2) Nanotubes of Different Crystallinity

One of the major challenges of implantology is to design nanoscale modifications of titanium implant surfaces inducing osseointegration. The aim of this study was to investigate the behavior of rat osteoblasts cultured on anodized TiO(2) nanotubes of different crystallinity (amorphous and anatase ph...

Descripción completa

Detalles Bibliográficos
Autores principales: Khrunyk, Yuliya Y., Belikov, Sergey V., Tsurkan, Mikhail V., Vyalykh, Ivan V., Markaryan, Alexandr Y., Karabanalov, Maxim S., Popov, Artemii A., Wysokowski, Marcin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7075131/
https://www.ncbi.nlm.nih.gov/pubmed/32069874
http://dx.doi.org/10.3390/nano10020320
_version_ 1783506975867273216
author Khrunyk, Yuliya Y.
Belikov, Sergey V.
Tsurkan, Mikhail V.
Vyalykh, Ivan V.
Markaryan, Alexandr Y.
Karabanalov, Maxim S.
Popov, Artemii A.
Wysokowski, Marcin
author_facet Khrunyk, Yuliya Y.
Belikov, Sergey V.
Tsurkan, Mikhail V.
Vyalykh, Ivan V.
Markaryan, Alexandr Y.
Karabanalov, Maxim S.
Popov, Artemii A.
Wysokowski, Marcin
author_sort Khrunyk, Yuliya Y.
collection PubMed
description One of the major challenges of implantology is to design nanoscale modifications of titanium implant surfaces inducing osseointegration. The aim of this study was to investigate the behavior of rat osteoblasts cultured on anodized TiO(2) nanotubes of different crystallinity (amorphous and anatase phase) up to 24 days. TiO(2) nanotubes were fabricated on VT1–0 titanium foil via a two-step anodization at 20 V using NH(4)F as an electrolyte. Anatase-phase samples were prepared by heat treatment at 500 °C for 1 h. VT1–0 samples with flat surfaces were used as controls. Primary rat osteoblasts were seeded over experimental surfaces for several incubation times. Scanning electron microscopy (SEM) was used to analyze tested surfaces and cell morphology. Cell adhesion and proliferation were investigated by cell counting. Osteogenic differentiation of cells was evaluated by qPCR of runt-related transcription factor 2 (RUNX2), osteopontin (OPN), integrin binding sialoprotein (IBSP), alkaline phosphatase (ALP) and osteocalcin (OCN). Cell adhesion and proliferation, cell morphology and the expression of osteogenic markers were affected by TiO(2) nanotube layered substrates of amorphous and anatase crystallinity. In comparison with flat titanium, along with increased cell adhesion and cell growth a large portion of osteoblasts grown on the both nanostructured surfaces exhibited an osteocyte-like morphology as early as 48 h of culture. Moreover, the expression of all tested osteogenic markers in cells cultured on amorphous and anatase TiO(2) nanotubes was upregulated at least at one of the analyzed time points. To summarize, we demonstrated that amorphous and anodized TiO(2) layered substrates are highly biocompatible with rat osteoblasts and that the surface modification with about 1500 nm length nanotubes of 35 ± 4 (amorphous phase) and 41 ± 8 nm (anatase phase) in diameter is sufficient to induce their osteogenic differentiation. Such results are significant to the engineering of coating strategies for orthopedic implants aimed to establish a more efficient bone to implant contact and enhance bone repair.
format Online
Article
Text
id pubmed-7075131
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-70751312020-03-20 Surface-Dependent Osteoblasts Response to TiO(2) Nanotubes of Different Crystallinity Khrunyk, Yuliya Y. Belikov, Sergey V. Tsurkan, Mikhail V. Vyalykh, Ivan V. Markaryan, Alexandr Y. Karabanalov, Maxim S. Popov, Artemii A. Wysokowski, Marcin Nanomaterials (Basel) Article One of the major challenges of implantology is to design nanoscale modifications of titanium implant surfaces inducing osseointegration. The aim of this study was to investigate the behavior of rat osteoblasts cultured on anodized TiO(2) nanotubes of different crystallinity (amorphous and anatase phase) up to 24 days. TiO(2) nanotubes were fabricated on VT1–0 titanium foil via a two-step anodization at 20 V using NH(4)F as an electrolyte. Anatase-phase samples were prepared by heat treatment at 500 °C for 1 h. VT1–0 samples with flat surfaces were used as controls. Primary rat osteoblasts were seeded over experimental surfaces for several incubation times. Scanning electron microscopy (SEM) was used to analyze tested surfaces and cell morphology. Cell adhesion and proliferation were investigated by cell counting. Osteogenic differentiation of cells was evaluated by qPCR of runt-related transcription factor 2 (RUNX2), osteopontin (OPN), integrin binding sialoprotein (IBSP), alkaline phosphatase (ALP) and osteocalcin (OCN). Cell adhesion and proliferation, cell morphology and the expression of osteogenic markers were affected by TiO(2) nanotube layered substrates of amorphous and anatase crystallinity. In comparison with flat titanium, along with increased cell adhesion and cell growth a large portion of osteoblasts grown on the both nanostructured surfaces exhibited an osteocyte-like morphology as early as 48 h of culture. Moreover, the expression of all tested osteogenic markers in cells cultured on amorphous and anatase TiO(2) nanotubes was upregulated at least at one of the analyzed time points. To summarize, we demonstrated that amorphous and anodized TiO(2) layered substrates are highly biocompatible with rat osteoblasts and that the surface modification with about 1500 nm length nanotubes of 35 ± 4 (amorphous phase) and 41 ± 8 nm (anatase phase) in diameter is sufficient to induce their osteogenic differentiation. Such results are significant to the engineering of coating strategies for orthopedic implants aimed to establish a more efficient bone to implant contact and enhance bone repair. MDPI 2020-02-13 /pmc/articles/PMC7075131/ /pubmed/32069874 http://dx.doi.org/10.3390/nano10020320 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Khrunyk, Yuliya Y.
Belikov, Sergey V.
Tsurkan, Mikhail V.
Vyalykh, Ivan V.
Markaryan, Alexandr Y.
Karabanalov, Maxim S.
Popov, Artemii A.
Wysokowski, Marcin
Surface-Dependent Osteoblasts Response to TiO(2) Nanotubes of Different Crystallinity
title Surface-Dependent Osteoblasts Response to TiO(2) Nanotubes of Different Crystallinity
title_full Surface-Dependent Osteoblasts Response to TiO(2) Nanotubes of Different Crystallinity
title_fullStr Surface-Dependent Osteoblasts Response to TiO(2) Nanotubes of Different Crystallinity
title_full_unstemmed Surface-Dependent Osteoblasts Response to TiO(2) Nanotubes of Different Crystallinity
title_short Surface-Dependent Osteoblasts Response to TiO(2) Nanotubes of Different Crystallinity
title_sort surface-dependent osteoblasts response to tio(2) nanotubes of different crystallinity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7075131/
https://www.ncbi.nlm.nih.gov/pubmed/32069874
http://dx.doi.org/10.3390/nano10020320
work_keys_str_mv AT khrunykyuliyay surfacedependentosteoblastsresponsetotio2nanotubesofdifferentcrystallinity
AT belikovsergeyv surfacedependentosteoblastsresponsetotio2nanotubesofdifferentcrystallinity
AT tsurkanmikhailv surfacedependentosteoblastsresponsetotio2nanotubesofdifferentcrystallinity
AT vyalykhivanv surfacedependentosteoblastsresponsetotio2nanotubesofdifferentcrystallinity
AT markaryanalexandry surfacedependentosteoblastsresponsetotio2nanotubesofdifferentcrystallinity
AT karabanalovmaxims surfacedependentosteoblastsresponsetotio2nanotubesofdifferentcrystallinity
AT popovartemiia surfacedependentosteoblastsresponsetotio2nanotubesofdifferentcrystallinity
AT wysokowskimarcin surfacedependentosteoblastsresponsetotio2nanotubesofdifferentcrystallinity