Cargando…

Improvement of Exciton Collection and Light-Harvesting Range in Ternary Blend Polymer Solar Cells Based on Two Non-Fullerene Acceptors

A non-fullerene molecule named Y6 was incorporated into a binary blend of PBDB-T and IT-M to further enhance photon harvesting in the near-infrared (near-IR) region. Compared with PBDB-T/IT-M binary blend devices, PBDB-T/IT-M/Y6 ternary blend devices exhibited an improved short-circuit current densi...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yanbin, Zhuang, Changlong, Fang, Yawen, Kim, Hyung Do, Yu, Huang, Wang, Biaobing, Ohkita, Hideo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7075163/
https://www.ncbi.nlm.nih.gov/pubmed/32013188
http://dx.doi.org/10.3390/nano10020241
Descripción
Sumario:A non-fullerene molecule named Y6 was incorporated into a binary blend of PBDB-T and IT-M to further enhance photon harvesting in the near-infrared (near-IR) region. Compared with PBDB-T/IT-M binary blend devices, PBDB-T/IT-M/Y6 ternary blend devices exhibited an improved short-circuit current density (J(SC)) from 15.34 to 19.09 mA cm(−2). As a result, the power conversion efficiency (PCE) increased from 10.65% to 12.50%. With an increasing weight ratio of Y6, the external quantum efficiency (EQE) was enhanced at around 825 nm, which is ascribed to the absorption of Y6. At the same time, EQE was also enhanced at around 600–700 nm, which is ascribed to the absorption of IT-M, although the optical absorption intensity of IT-M decreased with increasing weight ratio of Y6. This is because of the efficient energy transfer from IT-M to Y6, which can collect the IT-M exciton lost in the PBDB-T/IT-M binary blend. Interestingly, the EQE spectra of PBDB-T/IT-M/Y6 ternary blend devices were not only increased but also red-shifted in the near-IR region with increasing weight ratio of Y6. This finding suggests that the absorption spectrum of Y6 is dependent on the weight ratio of Y6, which is probably due to different aggregation states depending on the weight ratio. This aggregate property of Y6 was also studied in terms of surface energy.