Cargando…
Rapid Microwave Polymerization of Porous Nanocomposites with Piezoresistive Sensing Function
In this paper, polydimethylsiloxane (PDMS) and multi-walled carbon nanotube (MWCNT) nanocomposites with piezoresistive sensing function were fabricated using microwave irradiation. The effects of precuring time on the mechanical and electrical properties of nanocomposites were investigated. The incr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7075205/ https://www.ncbi.nlm.nih.gov/pubmed/32013133 http://dx.doi.org/10.3390/nano10020233 |
_version_ | 1783506993286217728 |
---|---|
author | Herren, Blake Charara, Mohammad Saha, Mrinal C. Altan, M. Cengiz Liu, Yingtao |
author_facet | Herren, Blake Charara, Mohammad Saha, Mrinal C. Altan, M. Cengiz Liu, Yingtao |
author_sort | Herren, Blake |
collection | PubMed |
description | In this paper, polydimethylsiloxane (PDMS) and multi-walled carbon nanotube (MWCNT) nanocomposites with piezoresistive sensing function were fabricated using microwave irradiation. The effects of precuring time on the mechanical and electrical properties of nanocomposites were investigated. The increased viscosity and possible nanofiller re-agglomeration during the precuring process caused decreased microwave absorption, resulting in extended curing times, and decreased porosity and electrical conductivity in the cured nanocomposites. The porosity generated during the microwave-curing process was investigated with a scanning electron microscope (SEM) and density measurements. Increased loadings of MWCNTs resulted in shortened curing times and an increased number of small well-dispersed closed-cell pores. The mechanical properties of the synthesized nanocomposites including stress–strain behaviors and Young’s Modulus were examined. Experimental results demonstrated that the synthesized nanocomposites with 2.5 wt. % MWCNTs achieved the highest piezoresistive sensitivity with an average gauge factor of 7.9 at 10% applied strain. The piezoresistive responses of these nanocomposites were characterized under compressive loads at various maximum strains, loading rates, and under viscoelastic stress relaxation conditions. The 2.5 wt. % nanocomposite was successfully used in an application as a skin-attachable compression sensor for human motion detection including squeezing a golf ball. |
format | Online Article Text |
id | pubmed-7075205 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70752052020-03-20 Rapid Microwave Polymerization of Porous Nanocomposites with Piezoresistive Sensing Function Herren, Blake Charara, Mohammad Saha, Mrinal C. Altan, M. Cengiz Liu, Yingtao Nanomaterials (Basel) Article In this paper, polydimethylsiloxane (PDMS) and multi-walled carbon nanotube (MWCNT) nanocomposites with piezoresistive sensing function were fabricated using microwave irradiation. The effects of precuring time on the mechanical and electrical properties of nanocomposites were investigated. The increased viscosity and possible nanofiller re-agglomeration during the precuring process caused decreased microwave absorption, resulting in extended curing times, and decreased porosity and electrical conductivity in the cured nanocomposites. The porosity generated during the microwave-curing process was investigated with a scanning electron microscope (SEM) and density measurements. Increased loadings of MWCNTs resulted in shortened curing times and an increased number of small well-dispersed closed-cell pores. The mechanical properties of the synthesized nanocomposites including stress–strain behaviors and Young’s Modulus were examined. Experimental results demonstrated that the synthesized nanocomposites with 2.5 wt. % MWCNTs achieved the highest piezoresistive sensitivity with an average gauge factor of 7.9 at 10% applied strain. The piezoresistive responses of these nanocomposites were characterized under compressive loads at various maximum strains, loading rates, and under viscoelastic stress relaxation conditions. The 2.5 wt. % nanocomposite was successfully used in an application as a skin-attachable compression sensor for human motion detection including squeezing a golf ball. MDPI 2020-01-29 /pmc/articles/PMC7075205/ /pubmed/32013133 http://dx.doi.org/10.3390/nano10020233 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Herren, Blake Charara, Mohammad Saha, Mrinal C. Altan, M. Cengiz Liu, Yingtao Rapid Microwave Polymerization of Porous Nanocomposites with Piezoresistive Sensing Function |
title | Rapid Microwave Polymerization of Porous Nanocomposites with Piezoresistive Sensing Function |
title_full | Rapid Microwave Polymerization of Porous Nanocomposites with Piezoresistive Sensing Function |
title_fullStr | Rapid Microwave Polymerization of Porous Nanocomposites with Piezoresistive Sensing Function |
title_full_unstemmed | Rapid Microwave Polymerization of Porous Nanocomposites with Piezoresistive Sensing Function |
title_short | Rapid Microwave Polymerization of Porous Nanocomposites with Piezoresistive Sensing Function |
title_sort | rapid microwave polymerization of porous nanocomposites with piezoresistive sensing function |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7075205/ https://www.ncbi.nlm.nih.gov/pubmed/32013133 http://dx.doi.org/10.3390/nano10020233 |
work_keys_str_mv | AT herrenblake rapidmicrowavepolymerizationofporousnanocompositeswithpiezoresistivesensingfunction AT chararamohammad rapidmicrowavepolymerizationofporousnanocompositeswithpiezoresistivesensingfunction AT sahamrinalc rapidmicrowavepolymerizationofporousnanocompositeswithpiezoresistivesensingfunction AT altanmcengiz rapidmicrowavepolymerizationofporousnanocompositeswithpiezoresistivesensingfunction AT liuyingtao rapidmicrowavepolymerizationofporousnanocompositeswithpiezoresistivesensingfunction |