Cargando…
Unsupervised Domain Adaptation With Optimal Transport in Multi-Site Segmentation of Multiple Sclerosis Lesions From MRI Data
Automatic segmentation of Multiple Sclerosis (MS) lesions from Magnetic Resonance Imaging (MRI) images is essential for clinical assessment and treatment planning of MS. Recent years have seen an increasing use of Convolutional Neural Networks (CNNs) for this task. Although these methods provide acc...
Autores principales: | Ackaouy, Antoine, Courty, Nicolas, Vallée, Emmanuel, Commowick, Olivier, Barillot, Christian, Galassi, Francesca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7075308/ https://www.ncbi.nlm.nih.gov/pubmed/32210780 http://dx.doi.org/10.3389/fncom.2020.00019 |
Ejemplares similares
-
Editorial: Automatic methods for multiple sclerosis new lesions detection and segmentation
por: Commowick, Olivier, et al.
Publicado: (2023) -
Regional brain development analysis through registration using anisotropic similarity, a constrained affine transformation
por: Legouhy, Antoine, et al.
Publicado: (2020) -
Predictive Value of Imaging Markers at Multiple Sclerosis Disease Onset Based on Gadolinium- and USPIO-Enhanced MRI and Machine Learning
por: Crimi, Alessandro, et al.
Publicado: (2014) -
White matter abnormalities in depression: A categorical and phenotypic diffusion MRI study
por: Coloigner, Julie, et al.
Publicado: (2019) -
GUBS: Graph-Based Unsupervised Brain Segmentation in MRI Images
por: Mayala, Simeon, et al.
Publicado: (2022)