Cargando…
Dosimetric characterization of a body‐conforming radiochromic sheet
PURPOSE: A novel radiochromic PRESAGE sheet (Heuris Inc.) with 3 mm thickness has been developed as a measurement tool for 2D dosimetry. Its inherent ability to conform to irregular surfaces makes this dosimeter advantageous for patient surface dosimetry. This study is a comprehensive investigation...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7075375/ https://www.ncbi.nlm.nih.gov/pubmed/32100948 http://dx.doi.org/10.1002/acm2.12838 |
Sumario: | PURPOSE: A novel radiochromic PRESAGE sheet (Heuris Inc.) with 3 mm thickness has been developed as a measurement tool for 2D dosimetry. Its inherent ability to conform to irregular surfaces makes this dosimeter advantageous for patient surface dosimetry. This study is a comprehensive investigation into the PRESAGE sheet’s dosimetric characteristic, accuracy and its potential use as a dosimeter for clinical applications. METHODS: The characterization of the dosimeter included evaluation of the temporal stability of the dose linearity, reproducibility, measurement uncertainties, dose rate, energy, temperature and angular dependence, lateral response artifacts, percent depth dose curve, and 2D dose measurement. Dose distribution measurements were acquired for regular square fields on a flat and irregular surface and an irregular modulated field on the smooth surface. All measurements were performed using an Epson 11000XL high‐resolution scanner. RESULTS: The examined dosimeters exhibit stable linear response, standard error of repeated measurements within 2%, negligible dose rate, energy, and angular dependence. The same linear dose response was measured while the dosimeter was in contact with a heated water surface. Gamma test and histogram analysis of the dose difference between PRESAGE and EBT3 film, PRESAGE and the treatment planning system (TPS) were used to evaluate the measured dose distributions. The PRESAGE sheet dose distributions showed good agreement with EBT3 film and TPS. A discrepancy smaller than the statistical error of the two dosimeters was reported. CONCLUSIONS: This study established a full dosimetric characterization of the PRESAGE sheets with the purpose of laying the foundation for future clinical uses. The results presented here for the comparison of this novel dosimeter with those currently in use reinforce the possibility of using this dosimeter as an alternative for irregular surface dose measurements. |
---|