Cargando…
Temporal condition pattern mining in large, sparse electronic health record data: A case study in characterizing pediatric asthma
OBJECTIVE: This study introduces a temporal condition pattern mining methodology to address the sparse nature of coded condition concept utilization in electronic health record data. As a validation study, we applied this method to reveal condition patterns surrounding an initial diagnosis of pediat...
Autores principales: | Campbell, Elizabeth A, Bass, Ellen J, Masino, Aaron J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7075539/ https://www.ncbi.nlm.nih.gov/pubmed/32049282 http://dx.doi.org/10.1093/jamia/ocaa005 |
Ejemplares similares
-
Identification of temporal condition patterns associated with pediatric obesity incidence using sequence mining and big data
por: Campbell, Elizabeth A., et al.
Publicado: (2020) -
Characterizing clinical pediatric obesity subtypes using electronic health record data
por: Campbell, Elizabeth A., et al.
Publicado: (2022) -
Utilization and effects of mobile electronic clinical decision support on pediatric asthma care quality in the emergency department and inpatient setting
por: Kerns, Ellen, et al.
Publicado: (2021) -
Usability challenges with electronic health records (EHRs) during prerounding
on pediatric inpatients
por: Alami, Jawad, et al.
Publicado: (2022) -
Clinical and temporal characterization of COVID-19 subgroups using patient vector embeddings of electronic health records
por: Ta, Casey N, et al.
Publicado: (2022)