Cargando…
Observation of an antiferromagnetic quantum critical point in high-purity LaNiO(3)
Amongst the rare-earth perovskite nickelates, LaNiO(3) (LNO) is an exception. While the former have insulating and antiferromagnetic ground states, LNO remains metallic and non-magnetic down to the lowest temperatures. It is believed that LNO is a strange metal, on the verge of an antiferromagnetic...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7075863/ https://www.ncbi.nlm.nih.gov/pubmed/32179750 http://dx.doi.org/10.1038/s41467-020-15143-w |
_version_ | 1783507103503089664 |
---|---|
author | Liu, Changjiang Humbert, Vincent F. C. Bretz-Sullivan, Terence M. Wang, Gensheng Hong, Deshun Wrobel, Friederike Zhang, Jianjie Hoffman, Jason D. Pearson, John E. Jiang, J. Samuel Chang, Clarence Suslov, Alexey Mason, Nadya Norman, M. R. Bhattacharya, Anand |
author_facet | Liu, Changjiang Humbert, Vincent F. C. Bretz-Sullivan, Terence M. Wang, Gensheng Hong, Deshun Wrobel, Friederike Zhang, Jianjie Hoffman, Jason D. Pearson, John E. Jiang, J. Samuel Chang, Clarence Suslov, Alexey Mason, Nadya Norman, M. R. Bhattacharya, Anand |
author_sort | Liu, Changjiang |
collection | PubMed |
description | Amongst the rare-earth perovskite nickelates, LaNiO(3) (LNO) is an exception. While the former have insulating and antiferromagnetic ground states, LNO remains metallic and non-magnetic down to the lowest temperatures. It is believed that LNO is a strange metal, on the verge of an antiferromagnetic instability. Our work suggests that LNO is a quantum critical metal, close to an antiferromagnetic quantum critical point (QCP). The QCP behavior in LNO is manifested in epitaxial thin films with unprecedented high purities. We find that the temperature and magnetic field dependences of the resistivity of LNO at low temperatures are consistent with scatterings of charge carriers from weak disorder and quantum fluctuations of an antiferromagnetic nature. Furthermore, we find that the introduction of a small concentration of magnetic impurities qualitatively changes the magnetotransport properties of LNO, resembling that found in some heavy-fermion Kondo lattice systems in the vicinity of an antiferromagnetic QCP. |
format | Online Article Text |
id | pubmed-7075863 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-70758632020-03-18 Observation of an antiferromagnetic quantum critical point in high-purity LaNiO(3) Liu, Changjiang Humbert, Vincent F. C. Bretz-Sullivan, Terence M. Wang, Gensheng Hong, Deshun Wrobel, Friederike Zhang, Jianjie Hoffman, Jason D. Pearson, John E. Jiang, J. Samuel Chang, Clarence Suslov, Alexey Mason, Nadya Norman, M. R. Bhattacharya, Anand Nat Commun Article Amongst the rare-earth perovskite nickelates, LaNiO(3) (LNO) is an exception. While the former have insulating and antiferromagnetic ground states, LNO remains metallic and non-magnetic down to the lowest temperatures. It is believed that LNO is a strange metal, on the verge of an antiferromagnetic instability. Our work suggests that LNO is a quantum critical metal, close to an antiferromagnetic quantum critical point (QCP). The QCP behavior in LNO is manifested in epitaxial thin films with unprecedented high purities. We find that the temperature and magnetic field dependences of the resistivity of LNO at low temperatures are consistent with scatterings of charge carriers from weak disorder and quantum fluctuations of an antiferromagnetic nature. Furthermore, we find that the introduction of a small concentration of magnetic impurities qualitatively changes the magnetotransport properties of LNO, resembling that found in some heavy-fermion Kondo lattice systems in the vicinity of an antiferromagnetic QCP. Nature Publishing Group UK 2020-03-16 /pmc/articles/PMC7075863/ /pubmed/32179750 http://dx.doi.org/10.1038/s41467-020-15143-w Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Liu, Changjiang Humbert, Vincent F. C. Bretz-Sullivan, Terence M. Wang, Gensheng Hong, Deshun Wrobel, Friederike Zhang, Jianjie Hoffman, Jason D. Pearson, John E. Jiang, J. Samuel Chang, Clarence Suslov, Alexey Mason, Nadya Norman, M. R. Bhattacharya, Anand Observation of an antiferromagnetic quantum critical point in high-purity LaNiO(3) |
title | Observation of an antiferromagnetic quantum critical point in high-purity LaNiO(3) |
title_full | Observation of an antiferromagnetic quantum critical point in high-purity LaNiO(3) |
title_fullStr | Observation of an antiferromagnetic quantum critical point in high-purity LaNiO(3) |
title_full_unstemmed | Observation of an antiferromagnetic quantum critical point in high-purity LaNiO(3) |
title_short | Observation of an antiferromagnetic quantum critical point in high-purity LaNiO(3) |
title_sort | observation of an antiferromagnetic quantum critical point in high-purity lanio(3) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7075863/ https://www.ncbi.nlm.nih.gov/pubmed/32179750 http://dx.doi.org/10.1038/s41467-020-15143-w |
work_keys_str_mv | AT liuchangjiang observationofanantiferromagneticquantumcriticalpointinhighpuritylanio3 AT humbertvincentfc observationofanantiferromagneticquantumcriticalpointinhighpuritylanio3 AT bretzsullivanterencem observationofanantiferromagneticquantumcriticalpointinhighpuritylanio3 AT wanggensheng observationofanantiferromagneticquantumcriticalpointinhighpuritylanio3 AT hongdeshun observationofanantiferromagneticquantumcriticalpointinhighpuritylanio3 AT wrobelfriederike observationofanantiferromagneticquantumcriticalpointinhighpuritylanio3 AT zhangjianjie observationofanantiferromagneticquantumcriticalpointinhighpuritylanio3 AT hoffmanjasond observationofanantiferromagneticquantumcriticalpointinhighpuritylanio3 AT pearsonjohne observationofanantiferromagneticquantumcriticalpointinhighpuritylanio3 AT jiangjsamuel observationofanantiferromagneticquantumcriticalpointinhighpuritylanio3 AT changclarence observationofanantiferromagneticquantumcriticalpointinhighpuritylanio3 AT suslovalexey observationofanantiferromagneticquantumcriticalpointinhighpuritylanio3 AT masonnadya observationofanantiferromagneticquantumcriticalpointinhighpuritylanio3 AT normanmr observationofanantiferromagneticquantumcriticalpointinhighpuritylanio3 AT bhattacharyaanand observationofanantiferromagneticquantumcriticalpointinhighpuritylanio3 |