Cargando…
Effect of row spacings on soil nematode communities and ecosystem multifunctionality at an aggregate scale
Effect of crop row spacing on the belowground ecosystem, especially at an aggregate scale, remains unexplored. To explore how row spacing influenced nematode community and ecosystem function at the aggregate scale, four row spacings i.e. equidistant-row (ER, 50 cm-inter-row distance, 33 cm-intra-row...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7076006/ https://www.ncbi.nlm.nih.gov/pubmed/32179832 http://dx.doi.org/10.1038/s41598-020-61498-x |
Sumario: | Effect of crop row spacing on the belowground ecosystem, especially at an aggregate scale, remains unexplored. To explore how row spacing influenced nematode community and ecosystem function at the aggregate scale, four row spacings i.e. equidistant-row (ER, 50 cm-inter-row distance, 33 cm-intra-row between plants in each row) and non-equidistant-row including NR1 (100 cm + 50 cm row distance and 22 cm intra-row), NR2 (100 cm + 50 cm inter-row and 25 cm intra-row), and NR3 (60 cm + 40 cm inter-row and 33 cm intra-row) were compared, and four soil aggregate fractions i.e. >2 mm, 1–2 mm, 0.25–1 mm and <0.25 mm were separated. Row spacing did not impact C and N, but significantly influenced P. The regulation effect of acid phosphatase on soil available P was aggregate-scale dependent. Nematode faunal analysis indicated that NR3 within 0.25–1 mm was less disturbed or relatively undisturbed environments. Structural equation model showed row spacing pattern directly affected multifunctionality, while aggregate fractions indirectly contributed to multifunctionality mainly by regulating the richness of total nematodes and trophic groups. It was concluded that NR3 had potential to construct more stable food web, and therefore was possibly the suitable planting pattern. |
---|