Cargando…
Causal networks for climate model evaluation and constrained projections
Global climate models are central tools for understanding past and future climate change. The assessment of model skill, in turn, can benefit from modern data science approaches. Here we apply causal discovery algorithms to sea level pressure data from a large set of climate model simulations and, a...
Autores principales: | Nowack, Peer, Runge, Jakob, Eyring, Veronika, Haigh, Joanna D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7076021/ https://www.ncbi.nlm.nih.gov/pubmed/32179737 http://dx.doi.org/10.1038/s41467-020-15195-y |
Ejemplares similares
-
Detecting and quantifying causal associations in large nonlinear time series datasets
por: Runge, Jakob, et al.
Publicado: (2019) -
Non‐Linear Dimensionality Reduction With a Variational Encoder Decoder to Understand Convective Processes in Climate Models
por: Behrens, Gunnar, et al.
Publicado: (2022) -
Causality on longitudinal data: Stable specification search in constrained structural equation modeling
por: Rahmadi, Ridho, et al.
Publicado: (2017) -
Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models
por: Meehl, Gerald A., et al.
Publicado: (2020) -
Modern causal inference approaches to investigate biodiversity-ecosystem functioning relationships
por: Runge, Jakob
Publicado: (2023)