Cargando…
Transcriptome-Wide Identification, Evolutionary Analysis, and GA Stress Response of the GRAS Gene Family in Panax ginseng C. A. Meyer
GRAS transcription factors are a kind of plant-specific transcription factor that have been found in a variety of plants. According to previous studies, GRAS proteins are widely involved in the physiological processes of plant signal transduction, stress, growth and development. The Jilin ginseng (P...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7076401/ https://www.ncbi.nlm.nih.gov/pubmed/32033157 http://dx.doi.org/10.3390/plants9020190 |
Sumario: | GRAS transcription factors are a kind of plant-specific transcription factor that have been found in a variety of plants. According to previous studies, GRAS proteins are widely involved in the physiological processes of plant signal transduction, stress, growth and development. The Jilin ginseng (Panax ginseng C.A. Meyer) is a heterogeneous tetraploid perennial herb of the Araliaceae family, ginseng genus. Important information regarding the GRAS transcription factors has not been reported in ginseng. In this study, 59 Panax ginseng GRAS (PgGRAS) genes were obtained from the Jilin ginseng transcriptome data and divided into 13 sub-families according to the classification of Arabidopsis thaliana. Through systematic evolution, structural variation, function and gene expression analysis, we further reveal GRAS’s potential function in plant growth processes and its stress response. The expression of PgGRAS genes responding to gibberellin acids (GAs) suggests that these genes could be activated after application concentration of GA. The qPCR analysis result shows that four PgGRAS genes belonging to the DELLA sub-family potentially have important roles in the GA stress response of ginseng hairy roots. This study provides not only a preliminary exploration of the potential functions of the GRAS genes in ginseng, but also valuable data for further exploration of the candidate PgGRAS genes of GA signaling in Jilin ginseng, especially their roles in ginseng hairy root development and GA stress response. |
---|