Cargando…

Variation in Root and Shoot Growth in Response to Reduced Nitrogen

Recently, root traits have been suggested to play an important role in developing greater nitrogen uptake and grain yield. However, relatively few breeding programs utilize these root traits. Over a series of experiments at different growth stages with destructive plant biomass measurements, we anal...

Descripción completa

Detalles Bibliográficos
Autores principales: Tolley, Seth, Mohammadi, Mohsen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7076707/
https://www.ncbi.nlm.nih.gov/pubmed/31979237
http://dx.doi.org/10.3390/plants9020144
_version_ 1783507269639471104
author Tolley, Seth
Mohammadi, Mohsen
author_facet Tolley, Seth
Mohammadi, Mohsen
author_sort Tolley, Seth
collection PubMed
description Recently, root traits have been suggested to play an important role in developing greater nitrogen uptake and grain yield. However, relatively few breeding programs utilize these root traits. Over a series of experiments at different growth stages with destructive plant biomass measurements, we analyzed above-ground and below-ground traits in seven geographically diverse lines of wheat. Root and shoot biomass allocation in 14-day-old seedlings were analyzed using paper roll-supported hydroponic culture in two Hoagland solutions containing 0.5 (low) and 4 (high) mM of nitrogen (N). For biomass analysis of plants at maturity, plants were grown in 7.5 L pots filled with soil mix under two nitrogen treatments. Traits were measured as plants reached maturity. High correlations were observed among duration of vegetative growth, tiller number, shoot dry matter, and root dry matter. Functionality of large roots in nitrogen uptake was dependent on the availability of N. Under high N, lines with larger roots had a greater yield response to the increase in N input. Under low N, yields were independent of root size and dry matter, meaning that there was not a negative tradeoff to the allocation of more resources to roots, though small rooted lines were more competitive with regards to grain yield and grain N concentration in the low-N treatment. In the high-N treatment, the large-rooted lines were correlated to an increase in grain N concentration (r = 0.54) and grain yield (r = 0.43). In low N, the correlation between root dry matter to yield (r = 0.20) and grain N concentration (r = −0.38) decreased. A 15-fold change was observed between lines for root dry matter; however, only a ~5-fold change was observed in shoot dry matter. Additionally, root dry matter measured at the seedling stage did not correlate to the corresponding trait at maturity. As such, in a third assay, below-ground and above-ground traits were measured at key growth stages including the four-leaf stage, stem elongation, heading, post-anthesis, and maturity. We found that root growth appears to be stagnant from stem elongation to maturity.
format Online
Article
Text
id pubmed-7076707
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-70767072020-03-20 Variation in Root and Shoot Growth in Response to Reduced Nitrogen Tolley, Seth Mohammadi, Mohsen Plants (Basel) Article Recently, root traits have been suggested to play an important role in developing greater nitrogen uptake and grain yield. However, relatively few breeding programs utilize these root traits. Over a series of experiments at different growth stages with destructive plant biomass measurements, we analyzed above-ground and below-ground traits in seven geographically diverse lines of wheat. Root and shoot biomass allocation in 14-day-old seedlings were analyzed using paper roll-supported hydroponic culture in two Hoagland solutions containing 0.5 (low) and 4 (high) mM of nitrogen (N). For biomass analysis of plants at maturity, plants were grown in 7.5 L pots filled with soil mix under two nitrogen treatments. Traits were measured as plants reached maturity. High correlations were observed among duration of vegetative growth, tiller number, shoot dry matter, and root dry matter. Functionality of large roots in nitrogen uptake was dependent on the availability of N. Under high N, lines with larger roots had a greater yield response to the increase in N input. Under low N, yields were independent of root size and dry matter, meaning that there was not a negative tradeoff to the allocation of more resources to roots, though small rooted lines were more competitive with regards to grain yield and grain N concentration in the low-N treatment. In the high-N treatment, the large-rooted lines were correlated to an increase in grain N concentration (r = 0.54) and grain yield (r = 0.43). In low N, the correlation between root dry matter to yield (r = 0.20) and grain N concentration (r = −0.38) decreased. A 15-fold change was observed between lines for root dry matter; however, only a ~5-fold change was observed in shoot dry matter. Additionally, root dry matter measured at the seedling stage did not correlate to the corresponding trait at maturity. As such, in a third assay, below-ground and above-ground traits were measured at key growth stages including the four-leaf stage, stem elongation, heading, post-anthesis, and maturity. We found that root growth appears to be stagnant from stem elongation to maturity. MDPI 2020-01-23 /pmc/articles/PMC7076707/ /pubmed/31979237 http://dx.doi.org/10.3390/plants9020144 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Tolley, Seth
Mohammadi, Mohsen
Variation in Root and Shoot Growth in Response to Reduced Nitrogen
title Variation in Root and Shoot Growth in Response to Reduced Nitrogen
title_full Variation in Root and Shoot Growth in Response to Reduced Nitrogen
title_fullStr Variation in Root and Shoot Growth in Response to Reduced Nitrogen
title_full_unstemmed Variation in Root and Shoot Growth in Response to Reduced Nitrogen
title_short Variation in Root and Shoot Growth in Response to Reduced Nitrogen
title_sort variation in root and shoot growth in response to reduced nitrogen
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7076707/
https://www.ncbi.nlm.nih.gov/pubmed/31979237
http://dx.doi.org/10.3390/plants9020144
work_keys_str_mv AT tolleyseth variationinrootandshootgrowthinresponsetoreducednitrogen
AT mohammadimohsen variationinrootandshootgrowthinresponsetoreducednitrogen